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Abstract: The coercivity of sintered magnets like barium ferrite (BaFe12O19), samarium-cobalt 
(SmCo5) or neodimium-iron-boron (Nd2Fe14B) is largely affected by the grain size. A method to 
evaluate coercivity behavior as function of the crystalline orientation, including the effect of grain 
size, is presented. Expressions were deduced to estimate the critical size of nucleus for spontaneous 
reversion of magnetization. The model indicates that the nucleation in grains of materials with high 
magnetocrystalline anisotropy only can begin by domain rotation. The model also predicts that the 
surface condition of grains is very important for the coercivity. A qualitative explanation is offered 
for the fact that materials with higher coercivity (or with smaller grain size) tend to follow an 
angular dependence of the coercivity similar to that given by the Stoner-Wohlfarth model, while 
materials with lower coercivity (or with larger grain size) tend to follow an angular dependence of 
the coercivity similar to 1 / cos theta. 
 
 
1. Introduction 
 

The effect of grain size on the coercivity of magnetic materials is a very controversial 
question. Cullity [1], for example, mentions this effect as “only partially understood”. Besides, the 
grain size effect has to be addressed for two different situations: soft and hard magnetic materials. 
For soft magnetic materials, this subject has been recently discussed [2].  

Our objective now is tackling this problem in the case of permanent magnets. It is 
experimental fact that the coercivity of sintered magnets as Barium ferrite (BaFe12O19) [3], 
samarium-cobalt (SmCo5) [4] or neodimium-iron-boron (Nd2Fe14B) [5] are strongly affected by the 
grain size.  

A very important detail has been neglected on the attempts for establishing a connection 
between grain size and coercivity: the angular dependence of the coercivity [3,6,7]. Although some 
studies [6] have indicated such relationship, those relevant data have been neglected.  

Experimental data show [3,6,7] that materials with larger coercivity (or smaller grain size) 
tend to follow an angular dependence of the coercivity similar to that given by the Stoner-
Wohlfarth model [8], while materials with smaller coercivity (or with larger grain size) tend to 
follow an angular dependence of the coercivity similar to 1/cos θ (Kondorsky law) [9].  

Thus, for evaluating the effect of grain size on coercivity, it is also necessary to include the 
effect of crystalline orientation or texture. This question is left for the end of this paper. Our 
starting point will be the relationship between particle size and magnetostatic energy.  



2. Relationship between magnetostatic energy and grain size 
 
2.1. Case of spherical grain 
 

The magnetostatic energy is associated with the demagnetizing field, and can be found with 
the equation: 

∫= dVHE dmagnet
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where Emagnet is the magnetostatic energy, Hd is the demagnetizing field and dV is an 
volume element. Making Hd=N Ms, where N is the demagnetizing factor and Ms magnetization of 
saturation, the magnetostic energy per volume unit is E = ½ N Ms

2  (for a sphere, N= 4 π/3). 
The reduction of magnetostatic energy due the magnetization reversal in a spherical cap 

with thickness x (Fig. 1) is directly proportional to the volume V of this cap [10,11].  

 
Figure 1. Spherical cap of thickness x in a sphere with radius R. It is assumed a 

ferromagnetic material with uniaxial anisotropy. 

For a sphere with radius R the magnetostatic energy, as function of  x, is (Fig. 1): 
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and the associated domain wall energy is (Fig. 1): 
DxRxE γπ )2( 2−=                                                 (2.3) 

where  γD, the domain wall energy is 2
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scD MR πγ =  [12]. Rc is the single domain critical 

radius, as defined by Kittel [12]. 
By another hand, the classical expression [9] is: 
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Adding Eq. 2.2 and Eq. 2.3, making (∂E/∂x) and dividing by an area element equal to π 
(2Rx-x2):  
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According to Eq. (2.5), ∞→
∂
∂

x
E  when 0→x . This means that formation of nucleus near 

the surface - by domain wall movement – is a very unfavorable process. The nucleus should have 
origin by domain rotation, the process studied by Stoner and Wohlfarth [8]. Besides, Eq. 2.2 and 
2.3 lead to another interesting result, as shown in Figure 2 where Emagnetostatic is given by Eq. 2.2, 
Ewall is given by Eq. 2.3 and Etotal is the sum of Eqs. 2.2 and 2.3.  
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Figure 2. Emagnetostatic, Ewal and Etotal , as  function of x/R, for three values of Rc/R 
 
Making (∂E/∂x)=0 for the curve Etotal (x) shown in Fig. 2, we get: 
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Where xcrit is the “critical” length, when spontaneous reversal of magnetization occurs. The 
critical volume is the volume of the spherical cap with thickness xcrit, given by Eq. 2.7.  

Fig. 2 provides a very important result: increasing Rc/R, the maximum Etotal also increases. 
If thermal processes are considered, the energy variation ∆E, given by Eq. 2.8, can be related with 
the decrease of coercivity, when grain size increases.  

 
∆E = Maximum { Etotal  (R)} – (Emagnetostatic (x=0))                                (2.8) 

 
According Aharoni [13], Micromagnetics – a theory that aims to predict the coercivity - 

fails when: i) surface roughness, ii) crystalline imperfections or iii) thermal fluctuations are not 
non-negligible. Statistical thermal fluctuations may overcome the barrier predicted by Eq. 2.8, 
since lattice defects are often present [14,15] and also collaborate for the magnetic reversal. Then, a 
nucleation theory like that by Turnbull and Fisher [16] could be adapted, predicting that the 
probability of nucleus reversal increases when the barrier  ∆E, given by Eq. 2.8, decreases. This 
implies that, with such thermal fluctuations present, coercivity decreases with grain size. However, 
this does not violate the so-called Brown Paradox (that says coercivity does not depend on grain 
size) because, as Aharoni [13] pointed out, Micromagnetics does not deal with thermal fluctuations.  

It also has to be noted that, when grain size is below the Rc, reduction of coercivity has 
already been attributed to thermal fluctuations [17]. Thus, similar phenomena may be occurring for 
grain size larger than Rc, where thermal fluctuations could be responsible for coercivity decrease. 



2.2. Case of a grain with cubic shape 

 
Figure 3. Corner with length x in a cube with side L. It is assumed a ferromagnetic material 

with uniaxial anisotropy. 

Now, the nucleation in a corner of a grain with cubic shape will be discussed. This problem 
is analogous to that of section 2.1. Eq. 2.9 and 2.10 are analogous, respectively, to Eq. 2.2 and 2.3.  
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After the sum of Eqs. 2.9 and 2.10, the ∂E/∂x per surface unity is: 
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In the same way as predicted by Eq. 2.5, Eq. 2.11 indicates that ∞→
∂
∂

x
E  when 0→x . 

Thus, also for a corner, the formation of a nucleus near the surface – by domain wall movement – is 
a very unfavorable process, in agreement with Eq. 2.5. 

 
3. The angular dependence of coercivity 

 
Substituting Eq. 2.5 in the Eq. 2.4, another result is obtained: 
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Eq. 3.1 predicts that the coercivity follows a law of type 1/cos θ, and also that the coercive 
field is directly proportional to the domain wall energy γD. By another hand, if the coercive 
mechanism is coherent rotation, it is predicted that coercivity should be described by Eq. 3.2.  
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Eqs. 3.1 and 3.2 offer a qualitative explanation for the experimental fact that that materials 
with larger coercivity (or smaller grain size) tend to follow an angular dependence of the coercivity 
similar to that given by the Stoner-Wohlfarth model [8], while materials with lower coercivity (or 
with larger grain size) tend to follow an angular dependence of the coercivity similar to 1/cos θ . 

Thus, there is a “competition” between the two mechanisms: resistance against domain wall 
displacement (Eq. 3.1) and between coherent rotation (Eq. 3.2). The reversal of magnetization will 
happen by the mechanism that is the most favorable. 



4. Analysis for SmCo5 magnets 
 
Magnets of SmCo5 type will be used as practical example for discussing the meaning of 

Eqs. 3.1 and 3.2. A typical SmCo5 magnet has grain diameter ~10 µm. A graph of Eq. 3.1, for R=5 
µm is shown in Fig. 4. Typical SmCo5 magnets can have coercive field > 30 kOe after heat 
treatment [14]. Without heat treatment, coercivity (iHc) is only a few kOe [14]. 

For R=5 µm, xcrit=0.62 µm (Eq. 2.6). After x= 0.62 µm, the reversal of magnetization 
should extend spontaneously in the grain. Figure 4 shows that, for magnets with larger coercivity, 
for example iHc=30 kOe, there is no competition between mechanisms assumed in Eqs. 3.1 and 3.2, 
and the mechanism should be coherent rotation [8], with angular dependence given by Eq. 3.2. 

However, for lower coercivity magnets, for example iHc=5 kOe, the calculation indicate 
“competition” between the two possible mechanisms (because they have approximately the same 
magnitude order in the range 0.2 <x <0.62 µm, see Fig. 4), and this leads to an angular dependence 
intermediate between those predicted by Eqs. 3.1 and 3.2.  
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Figure 4. Graph of Eq. 3.1 for a typical SmCo5 magnet, with R= 5 µm (xcrit=0.62 µm). For 

SmCo5, Rc = 1 µm [18], γD = 120 ergs/cm2 [18] and 4π Ms = 11.2 kG [18]. Calculation for θ=0. 
 
The experimental values of 30 kOe and 5 kOe shown in Fig. 4 should be interpreted as 

“reduction” of anisotropy field, probably due to crystalline defects that have their effect included 
by means of the non-dimensional α factor, as shown in Eq. 3.3: 
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Eq. 3.3 is a modification of Eq. 3.2 (for θ=0). According Eqs. 2.5 and 2.11, nucleation only 
can start by rotation. Although domain rotation is necessary to begin the process, reversal by 
domain wall displacement can also happen, in special for larger x (before xcrit), see Fig. 4.    

The model indicates (as showed by Eqs. 2.5 and 2.11) that the surface condition of the 
grains is essential for coercivity. The existence of lattice defects in the region near the surface 
favors domain rotation (reducing α in Eq. 3.3), decreasing coercivity.  

An experiment to verify this theory would be measuring the angular dependence of coercive 
field as function of temperature (T). Eq. 3.2 is function of K1 (T) and Ms (T), while Eq. 3.1 is 
function of γD (T) and Ms (T). This would allow to separate reversal contributions by rotation and 
by wall displacement.  

This model only can be applied for very specific situations, which are the same where 
Domain Theory [12] holds. It was supposed that the domain wall thickness can be considered 



negligible, typical condition of phases with high magnetocrystalline anisotropy. This is true for 
SmCo5, where δ=60Å [18] and Rc = 1 µm [18]. Thus,  Rc / δ> 100. 

 
Conclusions 

 
Expressions to evaluate the coercivity as function of crystalline orientation, including grain 

size considerations, were presented. It was obtained an equation to find the nucleus critical size. 
After this critical size, reversal spontaneously occurs.   

The model indicated that, in grains of phases with high magnetocrystalline anisotropy, the 
beginning of nucleation only can happen by domain rotation. But, although rotation is necessary to 
start the process, reversal by domain wall displacement also may occur at same moment. 

A qualitative explanation is offered for the fact that materials with higher coercivity (or with 
smaller grain size) tend to follow an angular dependence of the coercivity similar to that given by 
the Stoner-Wohlfarth model, while materials with lower coercivity (or with larger grain size) tend 
to follow an angular dependence of the coercivity similar to 1 / cos θ . 
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