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Abstract
An algorithm that uses an integrating voltmeter for
accurately estimating the harmonic magnitudes of
periodic arbitrary signals is presented. The uncertainties
associated with the magnitude estimates relative to the
fundamental depend on signal stability, harmonic content,
noise variance and are less than 1×10-5 for signals with up
to 64 harmonics.

Introduction
An extension of Swerlein’s algorithm[1][2] for accurately
measuring the magnitudes of the harmonics of a low-
frequency, low-distortion, voltage signal was already
published [3]. It is shown in [4] that this extension allows
one to obtain results with asynchronous sampling that
numerically approach those obtained using synchronous
sampling [5]. The contribution of this paper is to further
extend the algorithm version based on discrete Fourier
transforms described in [3] for accurately measuring the
harmonic magnitudes of periodic nonsinusoidal signals.

Model
A total of n bursts of N samples are taken. The internal
level trigger of the digital voltmeter (DVM) is used to
start each burst delayed by ktD (k = 0, …, n−1) from a
signal null-crossing. It is assumed that each burst can be
modelled by

xWy kk = ,    (1)

where yk = (y1k, …, yNk)′ is the data vector at the k-th
burst, Wk is the known N × 2m matrix with (i, j)-th
element cos 2πjf0(ti+ktD) for j = 1, …, m and sin
2π(j−m)f0(ti+ktD) for j = m+1, …, 2m, x is the 2m-vector
of fitting parameters (uncorrected for the systematic
effects), jf0 is the j-th harmonic (j = 1, …, m) of the
known constant fundamental frequency f0, and m is the
specified number of harmonics of the Fourier series.
The best estimate of x is [4]
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where Fk = Wk′Wk.
The error matrix  Λk = Fk − (N/2)I2m for each value of ktD,
where I2m is the identity matrix of order 2m, can be nearly
nullified as the algorithm tries to make N⋅tsamp (where
tsamp is the sampling period) equal to an integer number of

periods, so that Fk becomes diagonal. The algorithm
designs the experiment so that the matrix resulting from
the first summation in (2) is diagonalized. If one chooses
tD nearly equal to 1/nf0 and the average of Fk over all n (=
4m) bursts is evaluated, the “frozen” error matrices Λk
will be cancelled. Therefore the estimate (2) approaches
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The covariance matrix associated with the estimate (3) is
a diagonal matrix of order 2m with diagonal element [4]
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where the symbol ⋅  denotes the Euclidean norm.
The DVM input stages and nonideal sampling introduce
systematic errors that need to be corrected. The RMS
magnitude of the j-th harmonic, corrected for all known
systematic effects, is
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where κ is the correction of the DVM dc voltage mode
error, kbw(jf0) is the frequency response correction of the
input stages, kint(jf0) is the A/D converter frequency
response correction, and the symbol (⋅)j denotes the j-th
element. The elements of x are uncorrelated. Assuming
that the corrections are also uncorrelated, the uncertainty
associated with the magnitude dj of the j-th harmonic (j =
2, …, m) relative to the fundamental V1 is
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where the noise contribution is in general dominant.
Performance Tests

A stable, high-resolution DVM controlled by the
algorithm was used to measure the harmonic magnitudes
of periodic arbitrary signals generated by a stable,
digitally-synthesised, arbitrary signal generator (also used
in [3]). The latter synthesises the signals in a staircase
approximation. The values stored in memory are equally-
spaced samples of these signals with 2048 discrete steps
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per period with 12-bit amplitude resolution. The shape of
each signal is specified mathematically.
Several 60-Hz nonsinusoidal signals in the 10 V range
were synthesised and separately applied to the DVM
input. The Fourier coefficients relative to the fundamental
were numerically evaluated for each waveform and
compared with the algorithm output. Due to space
limitation, only the results obtained for a half-wave
rectified signal with m = 42 are described below.
The algorithm took about 3.75 min to evaluate the
harmonic magnitudes. The reported THD was 43.5642%.
The algorithm selected n = 168 bursts of N = 167 samples
spaced by tsamp=0.0001996 s. The fundamental magnitude
was measured with an uncertainty of 9.2 µV/V. The
harmonic magnitudes relative to the fundamental were
measured with an uncertainty of less than 6.6×10-6. The
computed and measured results are shown in Table I. No
difference was detected at the estimates for dj when the
frequency errors were within ±10-4. An uncertainty within
these limits is easily attainable by signal null-crossing
techniques.

Conclusion
It was shown that an algorithm based on discrete Fourier
transforms and Swerlein´s algorithm can be used to
measure the harmonic magnitudes relative to the
fundamental of arbitrary signals at low frequencies with
an uncertainty of less than 1×10-5. Periodic nonsinusoidal

signals were synthesised by a commercial source and
measured by the algorithm. The differences between
computed and measured values suggest that stable,
digitally-synthesised signal generators can be used as a
calculable standard of harmonic distortion with an
accuracy of less than 6×10-5 relative to the fundamental.
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Table I. Computed and measured values of the harmonic
magnitudes of a 60-Hz half-wave rectified signal.

Magnitude (%) Magnitude (%)j
Comp. Meas.

Error
(106)

j
Comp. Meas.

Error
(106)

1 100.000 100.000 - 22 0.26405 0.26722 32
2 42.4838 42.4783 −55 23 0.00402 0.00575 17
3 0.03444 0.02854 −59 24 0.22185 0.22284 10
4 8.49489 8.49682 19 25 0.00371 0.00538 17
5 0.01914 0.01923 1 26 0.18902 0.18889 −1
6 3.64069 3.63896 −17 27 0.00343 0.00433 9
7 0.01340 0.01165 −17 28 0.16298 0.16281 −2
8 2.02270 2.02141 −13 29 0.00320 0.00392 7
9 0.01034 0.00767 −27 30 0.14199 0.14165 −3

10 1.28726 1.28723 −5 31 0.00300 0.00364 6
11 0.00843 0.00532 −31 32 0.12481 0.12425 −6
12 0.89126 0.89390 26 33 0.00282 0.00322 4
13 0.00712 0.00765 5 34 0.11057 0.10983 −7
14 0.65366 0.65351 −1 35 0.00266 0.00283 2
15 0.00616 0.00543 −7 36 0.09865 0.09776 −9
16 0.49992 0.49960 −3 37 0.00252 0.00223 −3
17 0.00544 0.00348 −20 38 0.08856 0.08753 −10
18 0.39472 0.39643 17 39 0.00240 0.00131 −11
19 0.00487 0.00445 −4 40 0.07994 0.08026 3
20 0.31959 0.32030 7 41 0.00228 0.00200 −3
21 0.00440 0.00279 −16 42 0.07253 0.07246 −1
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