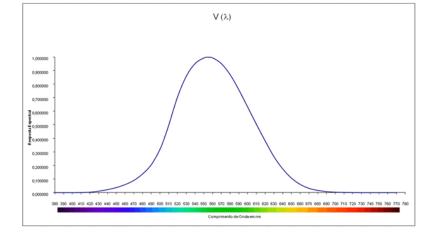


Goniofotometria e suas contribuições para a lluminação Pública

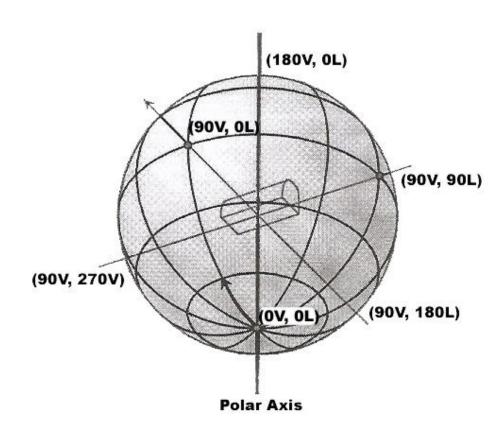


O que é goniofotometria?

Fotometria

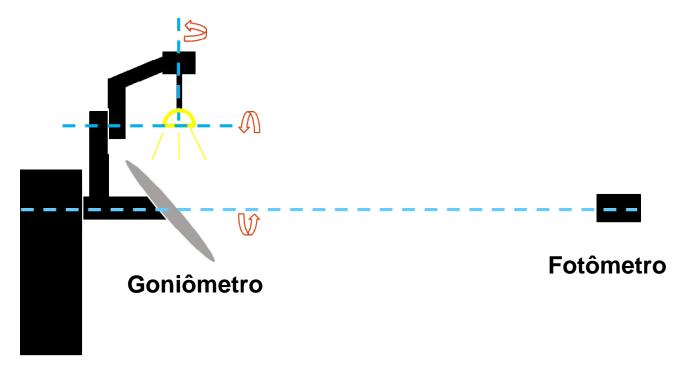
Medição da luz visível reproduzindo a sensibilidade relativa média do olho humano para os diversos comprimentos de onda (que correspondem às

diversas cores).



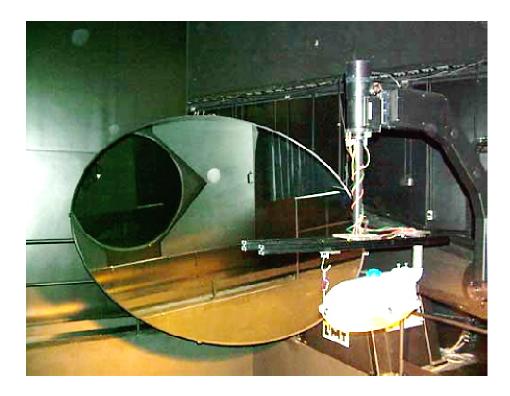
Goniofotometria

Medição fotométrica feita em direções definidas por dois ângulos normalmente chamados de horizontal e vertical (semelhante ao sistema de longitude e latitude na geografia). Permite saber como se distribui a luz que sai da lâmpada ou luminária.


O que é goniofotometria?

O que é goniofotômetro?

Equipamento para realizar medições goniofotométricas



Goniofotômetro do Inmetro – Tipo C, com espelho

O que é goniofotômetro?

Equipamento para realizar medições goniofotométricas

Goniofotômetro do Inmetro – Tipo C com espelho

O que é goniofotômetro?

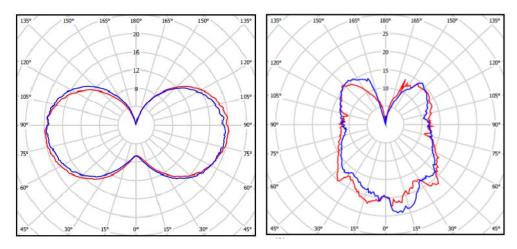
Grandezas fotométricas envolvidas

Fluxo luminoso

Quantidade de luz produzida por uma lâmpada ou luminária, ou qualquer outra fonte luminosa. Mede-se na unidade lúmen (lm).

Exemplo: Lâmpadas com fluxos luminosos equivalentes (aproximadamente

1200 lm): fluorescente de 20 W e incandescente de 100 W.



Grandezas fotométricas envolvidas

Intensidade luminosa

Avalia a quantidade de luz emitida em uma determinada direção. Mede-se na unidade candela (cd). Na goniofotometria medimos intensidade luminosa em muitas direções para saber como a luz da lâmpada ou luminária se distribui.

Distribuição luminosa das lâmpadas do slide anterior.

Grandezas fotométricas envolvidas

Iluminância

Quantidade de fluxo luminoso (luz) dividida pela área atingida. A unidade é lumens por metro quadrado, chamada de lux (lx). É o principal parâmetro utilizado atualmente para avaliar a iluminação.

O que é medido na goniofotometria de uma luminária IP?

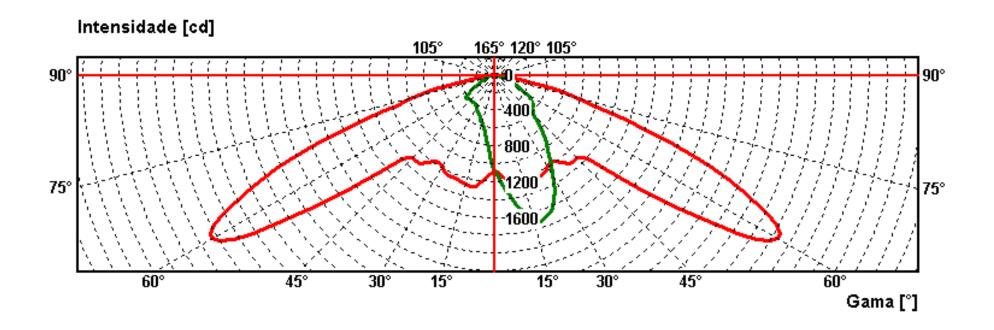
Distribuição luminosa

Intensidade luminosa medida em uma grande quantidade de direções diferentes (no caso do Inmetro, mais de 5 mil para IP).

Fluxo luminoso emitido pela luminária

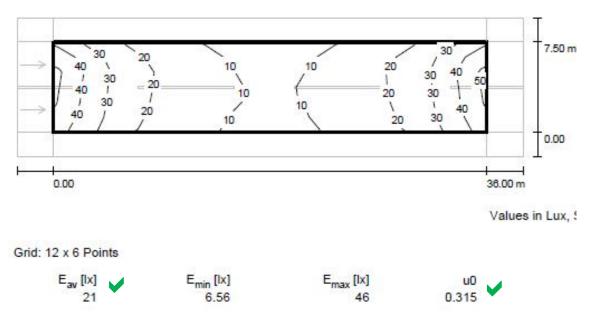
Calculado a partir da distribuição luminosa ou medido diretamente

Como são apresentados os resultados de um ensaio de goniofotometria?


-Tabelas

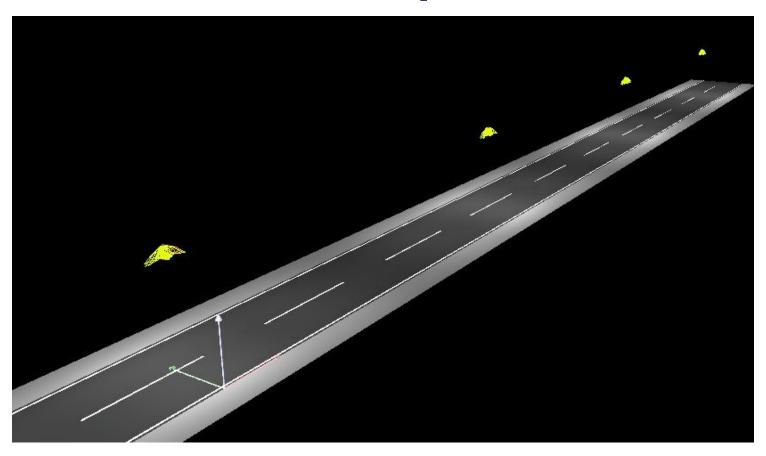
-Gráficos

-Arquivo ies



Como são apresentados os resultados da goniofotometria?

Como são utilizados os resultados apresentados no arquivo ies?



ABNT NBR 5101:2012

Classe	Iluminância Média Mínima (lux)	Fator de Uniformidade Mínimo (U=Emin/Emed)
V2	20	0,3

Como são utilizados os resultados apresentados no arquivos ies?

Que conclusões podemos tirar dos resultados da goniofotometria?

Qualidade da iluminação e consumo de energia ...

... em determinada instalação

Parâmetros normalmente utilizados para avaliação de uma luminária IP:

- Rendimento óptico (%) e/ou rendimento energético (lm/W)
- Classificação longitudinal Curta, Média ou Longa
- Classificação transversal Tipo I, II, III ou IV
- Classificação controle Totalmente Limitada, L, semi L, não L
- Iluminância e uniformidade (qualidade da iluminação)

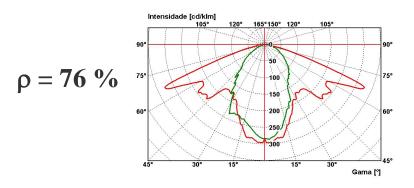
O rendimento óptico ou energético

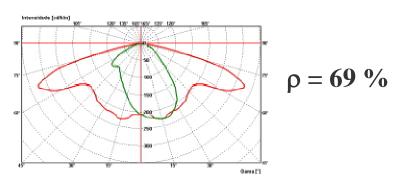
Não tem relação direta com o consumo de energia.

O que vai determinar o consumo individual da luminária são os seus componentes (lâmpada+reator ou leds+drive).

Duas luminárias diferentes, utilizando lâmpadas com potência de 250 W têm o mesmo consumo, independente do rendimento óptico.

A economia de energia é real quando diminuímos a potência instalada.


O rendimento óptico ou energético


Entre duas luminárias de igual potência, qual é a melhor para uma determinada instalação?

R.: A que tem melhor desempenho (que não necessariamente é a de maior rendimento óptico)

Parâmetros de avaliação da ABNT NBR 5101:2012:
Iluminância média
Fator de uniformidade

Duas luminárias VSAP 150 W:

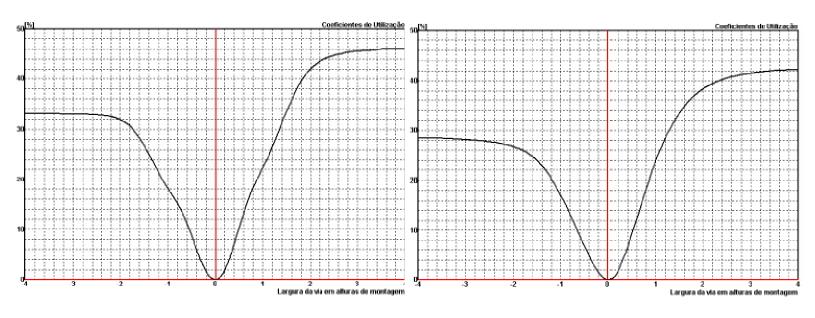
O rendimento óptico ou energético

A colocação da aba no projetor diminui o seu rendimento óptico, mas o torna melhor.

O rendimento óptico ou energético

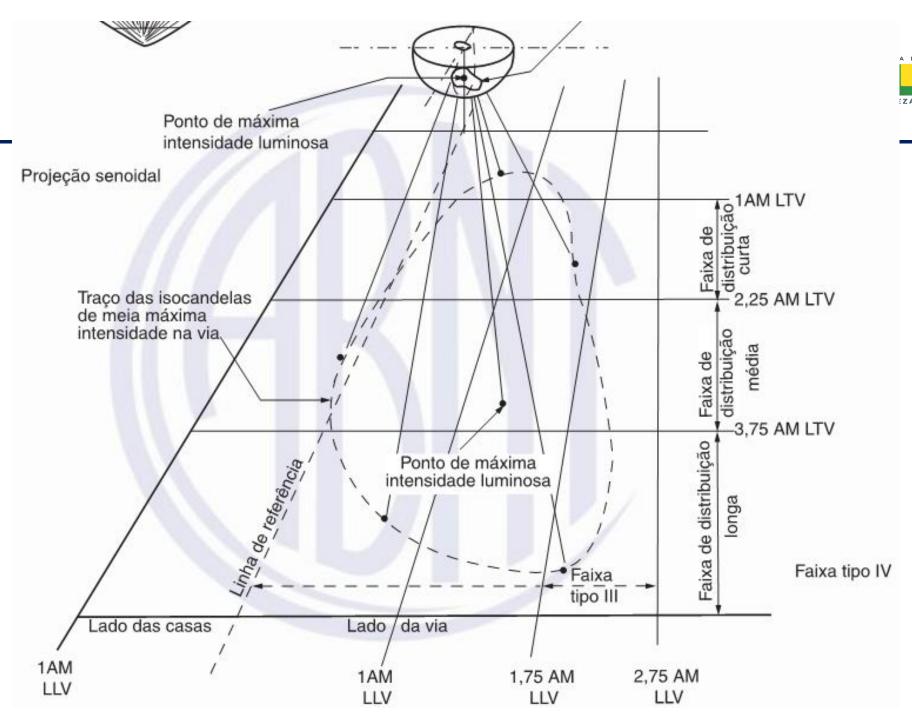
Entre duas luminárias que atendem os parâmetros luminotécnicos, qual é a melhor para uma determinada instalação?

R.: A que vai proporcionar menor consumo de energia.


Parâmetros para o consumo de energia W/poste – instalações existentes

W/km – instalações novas (possibilidade de distâncias maiores entre postes).

O rendimento óptico ou energético Exemplo: rua e duas calçadas contidas entre -0,48 AM e +1,18 AM


Tabela 10 Minuta RTQ - Largura da via: 10,6 m; Avanço da luminária em relação ao meio-fio: 2,5 m; Largura das calçadas: 2 m Altura de montagem: 8,5 m; Distância útil à frente da luminária: 10,1 m (+1,14 AM); Distância útil atrás da luminária: 4,5 m (-0,48 AM)

$$\rho_{\rm T} = 76 \% \quad \rho_{\rm via} = 33 \%$$

$$\rho_{\rm T} = 71 \% \quad \rho_{\rm v}$$

$$\rho_{\rm via} = 34 \%$$

As classificações de distribuição longitudinal e transversal - ABNT NBR 5101:1992 e 2012

O que se pratica hoje

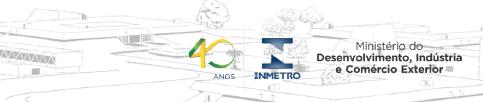
(De uma especificação técnica disponível na internet)

- -Para os efeitos desta norma, as práticas para determinação da fotometria no laboratório dos fornecedores são divididas em duas etapas distintas. A primeira consiste em medições laboratoriais efetuadas com goniofotômetro e processamento em software específico para que sejam levantadas as características de classificação, segundo a IESNA LM-63-95(*), e o rendimento. A segunda, baseada nos dados da etapa anterior, visa a validação das luminárias nos projetos padronizados e, eventual comprovação em campo.
- (*) Essa publicação não trata da classificação, e sim do arquivo padronizado.

Potência da lâmpada (W)	Altura de montagem (m)	Longitudinal	Transversal	Controle		
100	7		tipo II	limitada ou semi-		
150	8	média	tipo II			
250	9	Illedia	tipo III	IIIIIIIaua		
400	12		tipo II	totalmente limitada ou limitada		

-As luminárias devem apresentar um <u>rendimento mínimo</u>, em qualquer uma das fotometrias, de 75,0 % no hemisfério inferior.

O que se deveria praticar (nossa percepção)


- -Goniofotometria padronizada (ângulos horizontais e verticais) com adoção de simetria
- -Atinge um determinado rendimento óptico (% ou lm/W)
- -Atinge determinada classificação longitudinal
- -Atinge determinada classificação transversal
- -Atinge ou ultrapassa a classificação de controle especificada (ofuscamento e poluição luminosa)?
- -Atende os critérios luminotécnicos (projeto)?
- -Qual a potência consumida?

E as classificações para etiquetagem?

Se não forem dispensáveis, entendemos que deveriam ser feitas considerando o desempenho em projetos padronizados de instalações, e não pelo rendimento (% ou lm/W) e pelas classificações longitudinal e transversal.

A luminária IP é um produto normalmente comprado por órgãos e empresas que contam com técnicos especializados no assunto, e não pelo consumidor comum, como é o caso de fogões, geladeiras, lâmpadas, etc.

E as classificações para etiquetagem?

Número do projeto padronizado		2	3	4	5	6	7	8	9
Altura de Montagem (m) [1]	7,5		8,5			12			
Distância entre postes (m) [1]	36			36			42		
Largura da Rua (m) [1]	7,5	9,4	11,3	8,5	10,6	12,8	12	15	18
Avanço em relação ao meio-fio (m) [2]									
Ângulo de elevação (°) [2]									
Iluminância média mínima na rua (lx)	5	8	10	15	17	20	30	30	30
[3]	J	U	10	13	17	20	30	30	30
Iluminância média mínima na calçada	3	4	5	10	15	20	20	20	20
(lm) [3]	J	7	J	10	13	20	20	20	20
Uniformidade mínima na via [3]	0,2	0,2	0,2	0,2	0,3	0,3	0,4	0,4	0,4
Uniformidade mínima na calçada [3]	0,2	0,2	0,2	0,25	0,3	0,3	0,3	0,3	0,3

^[1] Tabela 14 do RTQ

^[2] A serem definidos

^[3] Valores exemplificativos com base nas tabelas 5 e 7 da ABNT NBR 5101:2012

Agradeço em nome do Laraf

e-mail: laraf@inmetro.gov.br

Laboratório de Radiometria e Fotometria (Laraf)

Goniofotometria

Equipe atual: André, Domingos, Ivo

Supervisão: Giovanna, Thiago Menegotto

Implantação: lakyra, Carla, Ana Valéria, Prof. Hans,

Miguel ...