SASO IEC 60601-2-20

MEDICAL ELECTRICAL EQUIPMENT –

Part 2-20: Particular requirements for the basic safety and essential performance of infant transport incubators

Date of SASO Board of Directors Approval : 1433(H)– – (2012– – )
Date of Publication in the Official Gazette : 1433(H)– – (2012– – )
Date of Enforcement of this Standard : 1433(H)– – (2012– – )
CONTENTS

FOREWORD ....................................................................................... 

INTRODUCTION ............................................................................... 

201.1 Scope, object and related standards ........................................... 4 
201.2 Normative references ............................................................... 6 
201.3 Terms and definitions ............................................................... 6 
201.4 General requirements ............................................................. 8 
201.5 General requirements for testing ME EQUIPMENT .................... 10 
201.6 Classification of ME EQUIPMENT and ME SYSTEMS ............... 10 
201.7 ME EQUIPMENT identification, marking and documents ........... 10 
201.8 Protection against electrical HAZARDS from ME EQUIPMENT .... 12 
201.9 Protection against MECHANICAL HAZARDS of ME EQUIPMENT and ME SYSTEMS 13 
201.10 Protection against unwanted and excessive radiation HAZARDS 16 
201.11 Protection against excessive temperatures and other HAZARDS 16 
201.12 Accuracy of controls and instruments and protection against hazardous outputs 17 
201.13 HAZARDOUS SITUATIONS and fault conditions ..................... 24 
201.14 PROGRAMMABLE ELECTRICAL MEDICAL SYSTEMS (PEMS) .......... 24 
201.15 Construction of ME EQUIPMENT ........................................... 24 
201.16 ME SYSTEMS ........................................................................ 26 
201.17 Electromagnetic compatibility of ME EQUIPMENT and ME SYSTEMS 26 
202 Electromagnetic compatibility – Requirements and tests ................ 27 
210 Requirements for the development of physiologic closed-loop controllers 27 
Annexes .......................................................................................... 27 
Annex AA (informative) Particular guidance and rationale .................. 28 
Bibliography .................................................................................... 36 
Index of defined terms used in this particular standard .................... 37 

Figure 201.101 – Positioning of air temperature sensors .................... 8 
Figure 201.102 – AVERAGE TRANSFER INCUBATOR TEMPERATURE .... 8 
Figure 201.103 – Layout of weight test devices .................................. 21 

Table 201.101 – Additional ESSENTIAL PERFORMANCE requirements .... 9
INTRODUCTION
The Saudi Standards, Metrology and Quality Organization (SASO) has adopted the International Standard IEC 60601-2-20 Ed 2.0 /2009 “MEDICAL ELECTRICAL EQUIPMENT – Part 2-20: Particular requirements for the basic safety and essential performance of infant transport incubators ” issued by the International Electro technical Commission (IEC). It has been adopted without any technical modifications with a view to its approval as a Saudi standard.
MEDICAL ELECTRICAL EQUIPMENT –

Part 2-20: Particular requirements for the basic safety and essential performance of infant transport incubators

201.1 Scope, object and related standards

Clause 1 of the general standard applies, except as follows:

201.1.1 Scope

Replacement:

This International Standard applies to the BASIC SAFETY and ESSENTIAL PERFORMANCE of INFANT TRANSPORT INCUBATOR equipment, as defined in 201.3.211 of this standard, also referred to as ME EQUIPMENT.

If a clause or subclause is specifically intended to be applicable to ME EQUIPMENT only, or to ME SYSTEMS only, the title and content of that clause or subclause will say so. If that is not the case, the clause or subclause applies both to ME EQUIPMENT and to ME SYSTEMS, as relevant.

HAZARDS inherent in the intended physiological function of ME EQUIPMENT or ME SYSTEMS within the scope of this standard are not covered by specific requirements in this standard except in 7.2.13 and 8.4.1 of the general standard.

NOTE See also 4.2 of the general standard.

This particular standard specifies safety requirements for INFANT TRANSPORT INCUBATORS but alternate methods of compliance with a specific clause by demonstrating equivalent safety will not be judged as non compliant if the MANUFACTURER has demonstrated in his RISK MANAGEMENT FILE that the RISK presented by the HAZARD has been found to be of an acceptable level when weighed against the benefit of treatment from the device.

This particular standard does not apply to:

– devices supplying heat via BLANKETS, PADS or MATTRESSES in medical use; for information see IEC 80601-2-35 [1];
– INFANT INCUBATORS which are not INFANT TRANSPORT INCUBATOR; for information see IEC 60601-2-19 [2];
– INFANT RADIANT WARMERS; for information, see IEC 60601-2-21 [3];
– INFANT PHOTOTHERAPY; for information, see IEC 60601-2-50 [4].

201.1.2 Object

Replacement:

The object of this particular standard is to establish particular BASIC SAFETY and ESSENTIAL PERFORMANCE requirements for INFANT TRANSPORT INCUBATORS as defined in 201.3.211, which minimize HAZARDS to the PATIENT and OPERATOR, and to specify tests by which compliance with the requirements can be verified.

---

1) Figures between square brackets refer to the Bibliography.
201.1.3  Collateral standards

Addition:

This particular standard refers to those applicable collateral standards that are listed in Clause 2 of the general standard and Clause 2 of this particular standard.

IEC 60601-1-2 and IEC 60601-1-10 apply as modified in Clauses 202 and 210 respectively. IEC 60601-1-3 does not apply. All other published collateral standards in the IEC 60601-1 series apply as published.

201.1.4  Particular standards

Replacement:

In the IEC 60601 series, particular standards may modify, replace or delete requirements contained in the general standard and collateral standards as appropriate for the particular ME EQUIPMENT under consideration, and may add other BASIC SAFETY and ESSENTIAL PERFORMANCE requirements.

A requirement of a particular standard takes priority over the general standard.

For brevity, IEC 60601-1 is referred to in this particular standard as the general standard. Collateral standards are referred to by their document number.

The numbering of clauses and subclauses of this particular standard corresponds to that of the general standard with the prefix “201” (e.g. 201.1 in this standard addresses the content of Clause 1 of the general standard) or applicable collateral standard with the prefix “20x” where x is the final digit(s) of the collateral standard document number (e.g. 202.4 in this particular standard addresses the content of Clause 4 of the 60601-1-2 collateral standard, 203.4 in this particular standard addresses the content of Clause 4 of the 60601-1-3 collateral standard, etc.). The changes to the text of the general standard are specified by the use of the following words:

"Replacement" means that the clause or subclause of the general standard or applicable collateral standard is replaced completely by the text of this particular standard.

"Addition" means that the text of this particular standard is additional to the requirements of the general standard or applicable collateral standard.

"Amendment" means that the clause or subclause of the general standard or applicable collateral standard is amended as indicated by the text of this particular standard.

Subclauses, figures or tables which are additional to those of the general standard are numbered starting from 201.101. However, due to the fact that definitions in the general standard are numbered 3.1 through 3.139, additional definitions in this standard are numbered beginning from 201.3.201. Additional annexes are lettered AA, BB, etc., and additional items aa), bb), etc.

Subclauses or figures which are additional to those of a collateral standard are numbered starting from 20x, where “x” is the number of the collateral standard, e.g. 202 for IEC 60601-1-2, 203 for IEC 60601-1-3, etc.

The term "this standard" is used to make reference to the general standard, any applicable collateral standards and this particular standard taken together.
Where there is no corresponding clause or subclause in this particular standard, the clause or subclause of the general standard or applicable collateral standard, although possibly not relevant, applies without modification; where it is intended that any part of the general standard or applicable collateral standard, although possibly relevant, is not to be applied, a statement to that effect is given in this particular standard.

### 201.2 Normative references

Clause 2 of the general standard applies, except as follows:

*NOTE* Informative references are listed in the bibliography beginning on page 36.

**Amendment:**


**Addition:**


ISO 32, *Gas cylinders for medical use – Marking for identification of content*

ISO 407, *Small medical gas cylinders – Pin-index yoke-type valve connections*

### 201.3 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC 60601-1:2005, apply, except as follows:

*NOTE* An index of defined terms is found beginning on page 37.

**Addition:**

**201.3.201 AIR CONTROLLED TRANSPORT INCUBATOR**

INCUBATOR in which the air temperature is automatically controlled by an air temperature sensor close to a value set by the OPERATOR

**201.3.202 AVERAGE TEMPERATURE**

average of temperature readings taken at regular intervals at any specified point in the COMPARTMENT achieved during STEADY TEMPERATURE CONDITION

**201.3.203 AVERAGE TRANSPORT INCUBATOR TEMPERATURE**

average of the INFANT TRANSPORT INCUBATOR TEMPERATURE readings taken at regular intervals achieved during STEADY TEMPERATURE CONDITION (see Figure 201.102)

**201.3.204 BABY CONTROLLED TRANSPORT INCUBATOR**

AIR CONTROLLED TRANSPORT INCUBATOR which has the additional capability of automatically controlling the INCUBATOR air temperature in order to maintain the temperature as measured by a SKIN TEMPERATURE SENSOR according to the CONTROL TEMPERATURE set by the OPERATOR
NOTE An infant transport incubator operating as a baby controlled incubator is a physiologic closed-loop controller as defined in IEC 60601-1-10.

201.3.205 COMPARTMENT
environmentally-controlled enclosure intended to contain an infant and with transparent section(s) which allows for viewing of the infant

201.3.206 CONTROL TEMPERATURE
temperature selected at the temperature control

201.3.207 INFANT PATIENT
up to the age of three months and a weight less than 10 kg

*201.3.208 INFANT TRANSPORT INCUBATOR
TRANSPORTABLE ME EQUIPMENT that is equipped with a COMPARTMENT and a TRANSPORTABLE electrical power source with the means to control the environment of the infant primarily by heated air within the COMPARTMENT

201.3.209 SKIN TEMPERATURE
temperature of the skin of the infant at a point on which the skin temperature sensor is placed

201.3.210 SKIN TEMPERATURE SENSOR
sensing device intended to measure the infant’s skin temperature

201.3.211 STEADY TEMPERATURE CONDITION
condition reached when the transport incubator temperature does not vary by more than 1 °C over a period of 1 h (see Figure 201.102)

201.3.212 TRANSPORT INCUBATOR TEMPERATURE
temperature of the air at a point 10 cm above the centre of the mattress surface in the compartment (see Figure 201.101, point M)
Key

\( M = \text{INCUBATOR TEMPERATURE sensor} \)

\( A, B, C, D = \text{Air temperature sensor} \)

The measuring points A to D and M are in a plane parallel to and at a distance of 10 cm from the MATTRESS.

**Figure 201.101 – Positioning of air temperature sensors**

![Diagram showing positioning of air temperature sensors](image)

**Figure 201.102 – Variation of INCUBATOR TEMPERATURE**

![Diagram showing variation of incubator temperature](image)

### 201.3.213

**TRANSPORTABLE ELECTRICAL POWER SOURCE**

rechargeable battery and battery charger intended to provide the electrical power necessary to operate the INFANT TRANSPORT INCUBATOR

### 201.4 General requirements

Clause 4 of the general standard applies, except as follows:

#### 201.4.1 Conditions for application to ME EQUIPMENT or ME SYSTEMS

*Addition:*
For ME EQUIPMENT which combines alternative heat sources, for instance INCUBATORS with integrated INFANT RADIANT WARMERS, devices supplying heat via BLANKETS, PADS or MATTRESSES, etc., the safety requirements of the particular standards for these alternative heat sources, if any, shall be met. The safety requirements of this particular standard shall not be altered by such additional heat sources specified by the MANUFACTURER, details of which are provided in the instruction for use.

Compliance is checked by the tests of clause 201.11 and subclause 201.15.4.2.1 of the relevant particular standards.

201.4.3 *ESSENTIAL PERFORMANCE

Additional subclause:

201.4.3.101 ESSENTIAL PERFORMANCE of INFANT TRANSPORT INCUBATORS

Additional ESSENTIAL PERFORMANCE requirements are found in the subclauses listed in Table 201.101.

Table 201.101 – Additional ESSENTIAL PERFORMANCE requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Subclause</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSENTIAL PERFORMANCE requirement 1</td>
<td>201.12.1.105 or generation of a visual and audible alarm in compliance with 201.15.4.2.1</td>
</tr>
<tr>
<td>ESSENTIAL PERFORMANCE requirement 2</td>
<td>201.12.1.107 or generation of a visual and audible alarm in compliance with 201.15.4.2.1</td>
</tr>
</tbody>
</table>

201.4.10 Power supply

Additional subclauses:

201.4.10.101 *Ability to operate with different power supply sources

The INFANT TRANSPORT INCUBATOR shall have a TRANSPORTABLE ELECTRICAL POWER SOURCE consisting of a rechargeable battery and battery charger designed to operate from an alternating current supply voltage. It shall also be designed to operate from at least one external direct and one external alternating current SUPPLY MAINS as specified in the instructions for use. All requirements of the general standard and this particular standard shall continue to be met.

Compliance is checked by repeating the tests in subclauses 201.12.1.101, 201.12.1.102, 201.12.1.105 and 201.12.1.107 with the INFANT TRANSPORT INCUBATOR operating at an ambient temperature of 15 °C ± 1 °C when supplied from each of its SUPPLY MAINS in turn. This also includes the TRANSPORTABLE ELECTRICAL POWER SOURCE.

201.4.10.102 Capacity of TRANSPORTABLE ELECTRICAL POWER SOURCE

The capacity of any TRANSPORTABLE ELECTRICAL POWER SOURCE shall be sufficient to maintain the INFANT TRANSPORT INCUBATOR at a temperature in accordance with the following test during at least 90 min.

Compliance is checked by inspection and the following test:
The INFANT TRANSPORT INCUBATOR with a fully charged battery shall be placed in an environment with an ambient temperature of 15 °C ± 1 °C. It shall be operated from the SUPPLY MAINS until a STEADY TEMPERATURE CONDITION has been established at a CONTROL TEMPERATURE of 36 °C and then set to operate from any TRANSPORTABLE ELECTRICAL POWER SOURCE. The INFANT TRANSPORT INCUBATOR TEMPERATURE shall be maintained within 2 °C of the CONTROL TEMPERATURE.

This test shall be conducted while all the electrical powered ACCESSORIES, as specified by the MANUFACTURER, are in operation and making the maximum demand upon the external TRANSPORTABLE ELECTRICAL POWER SOURCE.

201.4.10.103 Overcharge of TRANSPORTABLE ELECTRICAL POWER SOURCE

It shall not be possible to overcharge and damage the TRANSPORTABLE ELECTRICAL POWER SOURCE even if the ME EQUIPMENT is left connected to the a.c. electrical power source for an indefinite period. Controls which affect the rate of recharge or the final battery voltage level shall not be accessible to the OPERATOR without the aid of a TOOL.

Compliance is checked by inspection.

201.5 General requirements for testing ME EQUIPMENT

Clause 5 of the general standard applies, except as follows:

201.5.3 *Ambient temperature, humidity, atmospheric pressure

Addition to a):

The ME EQUIPMENT shall comply with the requirements of this standard when operating within the following conditions:

– an ambient temperature between +10 °C and +30 °C.

If not otherwise specified in this particular standard, all tests shall be carried out at an ambient temperature within the range of 21 °C to 26 °C and an ambient air velocity less than 1,0 m/s and greater than 0,3 m/s.

201.5.4 Other conditions

Addition:

If not otherwise specified, the CONTROL TEMPERATURE shall be 36 °C and shall always exceed the ambient temperature by at least 3 °C.

201.6 Classification of ME EQUIPMENT and ME SYSTEMS

Clause 6 of the general standard applies.

201.7 ME EQUIPMENT identification, marking and documents

Clause 7 of the general standard applies, except as follows:
201.7.2 Marking on the outside of ME EQUIPMENT or ME EQUIPMENT parts
(see also Table C.1)

Additional subclauses:

201.7.2.101 *Oxygen monitor

An INFANT TRANSPORT INCUBATOR not equipped with an integral oxygen monitor and which
provides means for oxygen administration shall be marked in a prominent position with a text
which states: "Use an oxygen monitor when oxygen is administered".

NOTE See also 7.5 of the general standard.

201.7.2.102 Heater surface temperature

If a heater is accessible without the use of a TOOL a notice, symbol (see 7.5 of the general
standard) or marking shall be displayed adjacent to the heater giving warning of high surface
temperature.

201.7.4 Marking of controls and instruments (see also Table C.3)

201.7.4.2 *Control devices

Addition:

Temperature controls shall be clearly marked with temperature settings on or adjacent to the
control. The markings shall be provided at intervals of not greater than 1 °C for AIR CONTROLLED
TRANSPORT INCUBATORS and not greater than 0,5 °C for BABY CONTROLLED TRANSPORT
INCUBATORS.

Marking of the maximum and the minimum values of controls and-indicators shall be such that
no confusion can arise with regard to the position of the control and/or the indicated values.

201.7.9.2.2 Warning and safety notices

Addition:

The instructions for use shall contain the following additional items:

* a) A statement that a INFANT TRANSPORT INCUBATOR should be used only by appropriately
trained personnel and under the direction of qualified medical personnel familiar with
currently known RISKS and benefits of INFANT TRANSPORT INCUBATOR use.

* b) A warning that direct sunlight or other radiant heat sources can cause an increase in
TRANSPORT INCUBATOR TEMPERATURE to dangerous levels.

* c) A statement that the use of oxygen increases the danger of fire and that auxiliary
equipment producing sparks shall not be placed in the INFANT TRANSPORT INCUBATOR.

* d) A warning that even small quantities of flammable agents, such as ether and alcohol, left
in the INFANT TRANSPORT INCUBATOR can cause fire in connection with oxygen.

e) A warning against possible use of the SKIN TEMPERATURE SENSOR as a rectal temperature
sensor, if such a warning is applicable.

f) A statement of the maximum loads which can be applied to all supports and mounting
brackets for ACCESSORIES and ancillary equipment.

g) For TYPE B APPLIED PARTS, where the INFANT may not be isolated from earth, a warning
that particular care must be taken to ensure that additional ME EQUIPMENT connected to
the INFANT is electrically safe.

h) An information on how and when to verify the functionality of the ALARM SYSTEM.

i) For oxygen administration into the COMPARTMENT:
-- a warning stating that administration of oxygen may increase the noise level for the INFANT within the INFANT TRANSPORT INCUBATOR;
-- an explanation of the operation of supplementary oxygen equipment supplied for use with the INFANT TRANSPORT INCUBATOR or as specified in the ACCOMPANYING DOCUMENTS;
-- a statement that an oxygen analyzer shall be used when oxygen is delivered to the INFANT.

j) Details of any specified combinations of ME EQUIPMENT (see 201.4.1).

201.7.9.2.8 *Start-up Procedure

Addition:

The instructions for use shall additionally contain: a specification of the warm-up time of the INFANT TRANSPORT INCUBATOR measured as specified in 201.12.1.108.

201.7.9.2.9 *Operating instructions

Addition:

The instructions for use shall contain the following additional items:

*a) A recommendation of the position and method of use of the SKIN TEMPERATURE SENSOR.
*b) Information about the range of CONTROL TEMPERATURE and relative humidity of the INFANT TRANSPORT INCUBATOR. If the INFANT TRANSPORT INCUBATOR is not supplied with means for control of the degree of humidity this shall be stated in the instructions for use.
*c) When applicable, a statement of the maximum allowed weight of additional equipment which might be placed on shelves connected to the INFANT TRANSPORT INCUBATOR.
*d) Information on the external supply circuits with which the INFANT TRANSPORT INCUBATOR can be operated according to 201.4.10.101. Additionally the MANUFACTURER shall specify in the ACCOMPANYING DOCUMENTS the polarity of the electrical connections as necessary.
*e) A statement:

-- of the mass and external dimensions of the INFANT TRANSPORT INCUBATOR including that of the specified external TRANSPORTABLE ELECTRICAL POWER SOURCE and with oxygen delivery system and trolley, if provided;
-- with which means and in what way a fixation of the INFANT TRANSPORT INCUBATOR within an emergency vehicle is achieved;
-- of the minimum ambient temperature, humidity and atmospheric pressure to which the INFANT TRANSPORT INCUBATOR can be exposed and still meet with the requirements of this standard;
-- of how the INFANT’s movements can be limited within the INFANT TRANSPORT INCUBATOR during transport.

201.7.9.3 Technical description

201.7.9.3.1 General

Additional item:

-- the MANUFACTURER shall specify in the ACCOMPANYING DOCUMENTS the maximum CO₂ concentration (see sub-clause 201.12.4.2.101)

201.8 Protection against electrical HAZARDS from ME EQUIPMENT

Clause 8 of the general standard applies.
201.9 Protection against MECHANICAL HAZARDS of ME EQUIPMENT and ME SYSTEMS

Clause 9 of the general standard applies, except as follows:

201.9.2 HAZARDS associated with moving parts

201.9.2.1 General

*Addition at end of the subclause:

This requirement is not applicable to an air circulating fan if it is accessible only when no INFANT is present in the INFANT TRANSPORT INCUBATOR and appropriate ME EQUIPMENT parts are removed for cleaning.

201.9.4.2.1 Instability in transport position

*Addition:

The INFANT TRANSPORT INCUBATORS shall remain stable when tilted 10° in NORMAL USE and when tilted 20° during transportation.

Compliance is checked by the following test:

The INFANT TRANSPORT INCUBATOR is placed in any possible position of NORMAL USE on a plane inclined at an angle of 0.18 rad (10°) to the horizontal plane. If wheels are present, they shall be temporarily fixed in their most disadvantageous position. Doors and drawers and the like shall be placed in the most disadvantageous position during NORMAL USE. The MATTRESS tray shall be extended outside the enclosure.

The test shall be repeated at an angle of 0.36 rad (20°), in which case the MATTRESS tray shall not be extended outside the enclosure. Doors and drawers and the like shall be placed in their most disadvantageous position during transportation.

201.9.4.3 Instability from unwanted lateral movement (including sliding)

*Additional subclauses:

201.9.4.3.101 Tip-over force

The lateral force to cause the INFANT TRANSPORT INCUBATOR to tip over shall be greater than 100 N.

Compliance is checked by the following test:

With the INFANT TRANSPORT INCUBATOR wheels locked and with the ME EQUIPMENT in the worst-case configuration of parts and ACCESSORIES, a lateral force shall be applied and measured using a force gauge. The point of application shall be at the highest point of the body of the ME EQUIPMENT. The INFANT TRANSPORT INCUBATOR shall not tip over when the force is 100 N or less.

201.9.4.3.102 *Prevention of movements

If the ME EQUIPMENT is mounted on wheels, the MANUFACTURER shall provide a means to prevent movement of the ME EQUIPMENT on a slope of at least 10° to the horizontal.

Compliance is checked by inspection and by the following test:
Place the ME EQUIPMENT with its wheels in a locked position and with all ACCESSORIES fitted, on a plane inclined at an angle of 10° to the horizontal. Report whether the ME EQUIPMENT is in a maintain position.

201.9.4.3.103 Prevention of INFANT’s movements

A means shall be provided to limit the INFANT’s movement to a defined area within the COMPARTMENT during NORMAL USE.

Compliance is checked by inspection.

201.9.4.3.104 Prevention of vibration

A means should be provided to limit the INFANT’s vibration within the COMPARTMENT during transportation.

201.9.6.2 Acoustic energy

201.9.6.2.1 Audible acoustic energy

Additional subclauses:

201.9.6.2.1.101 Sound level within the COMPARTMENT

In NORMAL USE the sound level within the COMPARTMENT shall not exceed sound pressure level of 60 dBA except as specified in subclause 201.12.3.107.

Compliance is checked by the following test:

With the microphone of a sound level meter complying with the requirements of IEC 61672-1 [5], positioned 100 mm to 150 mm above the centre of the INFANT tray, the measured sound level shall not exceed the specified values. For this test the INFANT TRANSPORT INCUBATOR shall be operated at a CONTROL TEMPERATURE of 36 °C and at a maximum humidity. The background sound level measured inside the COMPARTMENT shall be at least 10 dBA below that which is measured during the test.

201.9.6.2.1.102 Audible alarms sound level

Audible ALARM SIGNALS shall have a sound level of at least 65 dBA at a distance of 3 m perpendicular to the front of the control unit in a room according to ISO 3743. The auditory alarm may be adjusted by the OPERATOR to a minimum lower level of 50 dB measured with the range setting of an A-weighted scale. If the frequency of the auditory alarms is adjustable by the OPERATOR, these requirements shall apply to all the individual selectable frequencies.

Compliance is checked by inspection and measurement of the audible alarm level using a sound level meter, as required in subclause 201.12.3.104 of this particular standard, placed 1,5 m above the floor and 3 m from the control unit. For this test the TRANSPORT INCUBATOR shall be operated at a CONTROL TEMPERATURE of 36°C and at a maximum humidity. The background sound level measured shall be at least 10 dB(A) below that which is measured during the test.

201.9.6.2.1.103 Audible alarms sound level within COMPARTMENT

When any INFANT TRANSPORT INCUBATOR alarm is sounding, the sound level in the COMPARTMENT shall not exceed a sound pressure level of 80 dBA. If the frequency of the auditory alarms is adjustable by the OPERATOR, this shall apply to all the individual selectable frequencies.
Compliance is checked by the following test:

The alarm shall be actuated and the measurement shall be carried out as described in subclause 201.9.6.2.1.101.

201.9.8 HAZARDS associated with support systems

The general standard applies, except as follows:

201.9.8.3 Strength of PATIENT or OPERATOR support or suspension systems

201.9.8.3.1 General

Amendment:

The normal load for an INFANT PATIENT is reduced to 10 kg (see 201.3.201).

Additional subclauses:

201.9.8.3.101 *Barriers

For devices with an integral bed, suitable barriers such as walls or side panels shall prevent the PATIENT from falling off. Barriers intended to be opened or removed to allow access to the INFANT, such as doors, ports etc., shall close so as not to open under the test conditions specified below. It shall not be possible for barriers to be insecurely closed or latched whilst appearing to be engaged. The mechanical integrity of the INFANT TRANSPORT INCUBATOR shall be maintained under the following test conditions.

Compliance is checked by inspection and by the following test:

With all access port doors deliberately made as insecure as possible, without the use of a TOOL, whilst still appearing to be engaged, a horizontal force shall be applied to the centre of the access port door. The force shall be increased gradually from zero to 20 N in an interval of 5 s – 10 s and shall be held at maximum for 5 s. The barriers shall remain in the closed position.

201.9.8.3.102 MATTRESS tray

For devices with an integral bed, if the MATTRESS tray can be extended outside the enclosure it shall be restrained to ensure that the tray remains attached to the INCUBATOR, is supported and does not tip under the weight of the INFANT.

Compliance is checked by the following test:

A gradually increasing downward force is to be applied to the middle of the outside edge of the MATTRESS tray whilst in the fully extended position. The force is to be increased over 5 s – 10 s intervals until it equals 100 N and is to be obtained for a period of 1 min. The tray shall not incline by more than 5° to the horizontal axis of the INCUBATOR and there shall be no visible evidence of damage to the supporting structures.

Additional subclause:

201.9.8.101 Supports and mounting brackets for ACCESSORIES

Supports and mounting brackets for ACCESSORIES shall be suitable and of adequate strength for their purpose.
Compliance is checked by inspection and by the following test:

A gradually increasing force is applied so as to act vertically through the centre of the supports and mounting brackets, e.g. an accessory shelf in the extended position with a MANUFACTURER’S recommended load. The force is increased from zero in a 5 s to 10 s interval, until it equals three times the recommended load and is sustained for a period of 1 min. There shall be no evidence of damage to the items under test.

201.10 Protection against unwanted and excessive radiation HAZARDS

Clause 10 of the general standard applies.

201.11 Protection against excessive temperatures and other HAZARDS

Clause 11 of the general standard applies, except as follows:

201.11.2.2 APPLIED PARTS not intended to supply heat to a PATIENT

Replacement:

The temperature of the surfaces intended to be in contact with a PATIENT shall not exceed 40 °C. The temperature of other surfaces accessible to the PATIENT shall not exceed 40 °C for metal surfaces and 43 °C for other materials.

These requirements apply in NORMAL CONDITIONS and SINGLE FAULT CONDITIONS including:

– failure of the air circulation,
– failure of a THERMOSTAT,
– disconnection of the SKIN TEMPERATURE SENSOR.

Compliance is checked by the following test:

The maximum temperature of surfaces intended to be in contact with and surfaces accessible to the INFANT shall be measured according to 11.1.2 of the general standard and include test conditions as described in the compliance test of subclauses 201.12.3.101 and 201.15.4.2.1 of this particular standard.

201.11.2 * Fire prevention

Subclause 11.2 of the general standard applies.

201.11.6.2 **Overflow in ME EQUIPMENT

Replacement of the first sentence of the first paragraph:

If ME EQUIPMENT incorporates a reservoir or liquid storage chamber that is liable to be overfilled or to overflow in NORMAL USE, including transit between periods of use, liquid overflowing from the reservoir or chamber shall not wet any MEANS OF PROTECTION that is liable to be adversely affected by such a liquid, nor shall an unacceptable RISK be created.

Additional subclause:
201.11.6.2.101  Water level indicator

If a water reservoir is provided as an integral part of the INFANT TRANSPORT INCUBATOR, it shall have a water level indicator with “max” and “min” markings if the level of the water in the tank cannot be seen. The tank shall be so designed that it may be drained without tilting the INFANT TRANSPORT INCUBATOR.

*Compliance is checked by inspection.*

201.11.6.3  *Spillage on ME EQUIPMENT and ME SYSTEMS*

*Replacement:*

INFANT TRANSPORT INCUBATORS shall be so constructed that spillage does not wet parts which if wetted might cause a HAZARD. Such spillage is considered a SINGLE FAULT CONDITION.

*Compliance is checked by the following test:*

The ME EQUIPMENT shall be positioned as for NORMAL USE with the canopy in the normal position; 200 ml of water is poured on any point of the top surface of the ME EQUIPMENT. After this test the ME EQUIPMENT shall comply with the requirements of this particular standard.

201.11.6.6  *Cleaning and disinfection of ME EQUIPMENT and ME SYSTEMS*

*Addition:*

A humidifier, if provided, shall be designed to permit the application of PROCEDURES that effect microbiological decontamination between uses.

201.11.8  Interruption of the power supply / SUPPLY MAINS to ME EQUIPMENT

*Addition:*

The ME EQUIPMENT shall be so designed, that an interruption and a restoration of the power supply up to 10 minutes does not change the CONTROL TEMPERATURE or other preset values.

*Compliance is checked by switching the SUPPLY MAINS off and then switching on, and inspecting the ME EQUIPMENT.*

201.12  Accuracy of controls and instruments and protection against hazardous outputs

Clause 12 of the general standard applies, except as follows:

201.12.1  Accuracy of controls and instruments

*Additional subclauses:*

201.12.1.101  * Stability of TRANSPORT INCUBATOR TEMPERATURE*

During STEADY TEMPERATURE CONDITION the TRANSPORT INCUBATOR TEMPERATURE shall not differ from the AVERAGE TRANSPORT INCUBATOR TEMPERATURE by more than 1 °C.

*Compliance is checked by measurement at CONTROL TEMPERATURES of 32 °C and 36 °C over a period of at least 1 h.*
201.12.1.102 * Uniformity of TRANSPORT INCUBATOR TEMPERATURE

With an INFANT TRANSPORT INCUBATOR working as an AIR CONTROLLED TRANSPORT INCUBATOR and the CONTROL TEMPERATURE set at any temperature within its range, the AVERAGE TEMPERATURE in each of the points A, B, C and D as specified in the test instruction shall not differ from the AVERAGE TRANSPORT INCUBATOR TEMPERATURE by more than 1,5°C in NORMAL USE. In any position of the tilted MATTRESS it shall not differ by more than 2 °C.

Compliance is checked by the following test:

Calibrated temperature sensors shall be placed at five points in a plane parallel to and 10 cm above the MATTRESS surface. Point M shall be a point 10 cm above the centre of the MATTRESS (see Figure 201.101, point M). The other points (A, B, C, and D) shall be the centres of the four areas formed by lines, which divide both the width and the length in two parts (see Figure 201.101, points A to D). The AVERAGE TEMPERATURE at each of these five points shall be measured at CONTROL TEMPERATURES of 32 °C and 36 °C.

The differences between the five measured values and the measured AVERAGE TRANSPORT INCUBATOR TEMPERATURE shall be compared as specified. The test shall be undertaken with the INCUBATOR MATTRESS tray horizontal and at the two extremes of its tilt angles.

201.12.1.103 *Accuracy of SKIN TEMPERATURE SENSOR

The accuracy of the SKIN TEMPERATURE SENSOR for measuring SKIN TEMPERATURE shall be within ±0,3 °C.

Compliance is checked by the following test:

The SKIN TEMPERATURE SENSOR shall be immersed in a water bath which has the capability of controlling the temperature of the water such that it fluctuates by less than ±0,1 °C around its controlled value. The water bath temperature shall be at a nominal 36 °C. A standard thermometer shall be positioned with its temperature sensitive element adjacent to the SKIN TEMPERATURE SENSOR. The displayed SKIN TEMPERATURE shall not differ from the water bath temperature, measured within an uncertainty not greater than 0,05 °C, by more than 0,3 °C.

201.12.1.104 *Accuracy between SKIN TEMPERATURE and CONTROL TEMPERATURE

With an INFANT TRANSPORT INCUBATOR working in the BABY CONTROLLED TRANSPORT INCUBATOR mode with horizontal MATTRESS orientation the temperature as measured by the SKIN TEMPERATURE SENSOR shall not differ from the CONTROL TEMPERATURE by more than 0,7 °C in STEADY TEMPERATURE CONDITION.

Compliance is checked by the following test:

The SKIN TEMPERATURE SENSOR shall be freely suspended 10 cm above the centre of the MATTRESS surface. The SKIN TEMPERATURE shall be measured at CONTROL TEMPERATURES of 36 °C.

If it can be demonstrated that an alternative test method is more relevant for this test the MANUFACTURER may propose that method to verify the performance requirement.

201.12.1.105 *Accuracy of TRANSPORT INCUBATOR TEMPERATURE indication

An indication of TRANSPORT INCUBATOR TEMPERATURE shall be provided by a means which is independent of any device used for control of the TRANSPORT INCUBATOR TEMPERATURE. It shall be exclusively used for indication of TRANSPORT INCUBATOR TEMPERATURE and it shall be so located as to be easily read without opening the INFANT TRANSPORT INCUBATOR even when working at a maximum humidity setting.
A mercury-in-glass thermometer shall not be used.

The AVERAGE TEMPERATURE device reading shall not differ from the AVERAGE TRANSPORT INCUBATOR TEMPERATURE, measured by a standard thermometer, by more than 1°C, less the standard thermometer error. The standard thermometer shall be accurate within ±0.05°C. It shall have a measuring range of at least 20°C to 40°C. If the temperature sensitive component of any device is located at a point where the air temperature consistently differs from the TRANSPORT INCUBATOR TEMPERATURE, the device may be specially calibrated with an offset in order to meet the above requirements. However, in this case, full details of the special calibration shall be specified in the ACCOMPANYING DOCUMENTS.

Compliance is checked by inspection and measurement at CONTROL TEMPERATURES of 32°C and 36°C.

201.12.1.106 *Accuracy of TRANSPORT INCUBATOR TEMPERATURE control

With an INFANT TRANSPORT INCUBATOR operating as an AIR CONTROLLED TRANSPORT INCUBATOR, the AVERAGE TRANSPORT INCUBATOR TEMPERATURE shall not differ from the CONTROL TEMPERATURE by more than ±2°C at an ambient temperature between 10°C and 20°C, and by more than ±1.5°C at an ambient temperature between 20°C and 30°C.

Compliance is checked by measuring the AVERAGE TRANSPORT INCUBATOR TEMPERATURE at a CONTROL TEMPERATURE of 36°C and in the STEADY TEMPERATURE CONDITION at an ambient temperature of 15°C ± 1°C and an ambient temperature of 25°C ± 1°C.

201.12.1.107 *Warm-up time

The warm-up time of the ME EQUIPMENT shall not differ by more than 20% from the warm-up time specified in the instructions for use (see 201.7.9.2.8).

Compliance is checked by the following test:

With the CONTROL TEMPERATURE set to 12°C above ambient temperature, the supply voltage being equal to the RATED voltage, and the ME EQUIPMENT operating as an AIR CONTROLLED TRANSPORT INCUBATOR, the INFANT TRANSPORT INCUBATOR is switched on, starting from COLD CONDITION. The time for the TRANSPORT INCUBATOR TEMPERATURE to rise by 11°C is measured (see Figure 201.102). The humidity control, if fitted, shall be set to its maximum value. The water level of a humidifier water container shall be normal. The water in such a container shall be at ambient temperature.

201.12.1.108 *Overshoot of TRANSPORT INCUBATOR TEMPERATURE

After adjustment of the CONTROL TEMPERATURE in the manner described in the following test, the overshoot in TRANSPORT INCUBATOR TEMPERATURE shall not exceed 2°C.

Compliance is checked by the following test:

The INFANT TRANSPORT INCUBATOR is operated as an AIR CONTROLLED TRANSPORT INCUBATOR at a CONTROL TEMPERATURE of 32°C until STEADY TEMPERATURE CONDITION is reached. The temperature control is then adjusted to a CONTROL TEMPERATURE of 36°C. The overshoot of TRANSPORT INCUBATOR TEMPERATURE and the time to reach the new STEADY TEMPERATURE CONDITION from the first passage of 36°C shall be measured.

201.12.1.109 *Accuracy of indication of relative humidity

For INFANT TRANSPORT INCUBATOR any indicated value of relative humidity shall have an accuracy of ±15% of actual measured value.
Compliance is checked by the measurement of the relative humidity with a humidity measuring device at the centre of the enclosure. The CONTROL TEMPERATURE shall be set at a value between 32 °C and 36 °C.

201.12.1.110 * Oxygen control

If an oxygen controller forms an integral part of the INFANT TRANSPORT INCUBATOR, then there shall be independent sensors for monitoring and control of O₂.

A visual and auditory alarm shall be given if the displayed oxygen concentration deviates from the control setting level by more than ±5 vol. % O₂.

Compliance is checked by the following test:

Set the oxygen control to 35 vol. %. When steady condition has been reached, decrease the concentration quickly to less than 29 vol. %. Verify that the alarm activates at a displayed oxygen concentration no less than 30 vol. %.

Restore the oxygen concentration to 35 vol. % O₂. When steady condition has been reached, increase the concentration quickly to more than 41 vol. %. Verify that the alarm activates at a displayed oxygen concentration no more than 40 vol. %.

201.12.1.111 * Air velocity

In NORMAL USE the air velocity over the MATTRESS shall not exceed 0,35 m/s.

Compliance is checked by measurement at the five points specified in the test specification of subclause 201.12.1.102.

201.12.1.113 Change in ambient temperature

Following the changes in ambient temperature described in the following test, the TRANSPORT INCUBATOR TEMPERATURE shall not differ from the CONTROL TEMPERATURE by more than 3 °C.

Compliance is checked by the following test:

The INFANT TRANSPORT INCUBATOR is operated as an AIR CONTROLLED TRANSPORT INCUBATOR connected to an external power source. When the STEADY TEMPERATURE CONDITION is established at an ambient temperature within the range of 21 °C to 25 °C and at a CONTROL TEMPERATURE of 36 °C, it shall be set to operate in accordance with the ACCOMPANYING DOCUMENTS without a SUPPLY MAINS and transferred into an environment where the ambient temperature is being kept at −5 (±2) °C and the wind velocity is not more than 1 m/s. After 15 min it shall be returned into an environment where the ambient temperature lies within the range of 20 °C to 25 °C and reconnected to an external supply and operated for a further 30 min. The TRANSPORT INCUBATOR TEMPERATURE shall be monitored throughout the whole test and at no time shall it go outside the specific limits.

If the ACCOMPANYING DOCUMENTS specify to meet this requirement at a lower ambient temperature than −5 (±2) °C or for a longer period than 15 min the INFANT TRANSPORT INCUBATOR shall be additionally tested for compliance with those claims as indicated.

201.12.1.114 Provision of oxygen

a) There shall be means for the provision of oxygen.

Compliance is checked by inspection.
b) If the source of oxygen is incorporated in the INFANT TRANSPORT INCUBATOR, it shall be capable of delivering oxygen of such an amount that a concentration of up to 60 vol % can be given to the INFANT during at least 1 h. Where oxygen is supplied from a reservoir there shall be an indication of the remaining content. This indication shall be on a position which can be easily read. Gas connections to high pressure cylinders shall comply with ISO 32 and ISO 407.

Compliance is checked by inspection and measurement.

201.12.1.115 Overshoot of TRANSPORT INCUBATOR TEMPERATURE

After opening the access doors of the front side of the INCUBATOR for 10 min, the overshoot in TRANSPORT INCUBATOR TEMPERATURE shall not exceed 2 °C.

Compliance is checked by the following test:

The INFANT TRANSPORT INCUBATOR is operated as an AIR CONTROLLED TRANSPORT INCUBATOR at a CONTROL TEMPERATURE of 36 °C until STEADY TEMPERATURE CONDITION is reached. The access door of the front side of the INFANT TRANSPORT INCUBATOR is then opened for 10 min. After closing of the doors the overshoot of TRANSPORT INCUBATOR TEMPERATURE shall be measured.

201.12.1.116 * Weighing Scale

If a weighing scale is supplied as an integral part of the ME EQUIPMENT or as an ACCESSORY specifically for use with the ME EQUIPMENT, the weight displayed value shall not differ from the test weights by more than the MANUFACTURER'S specifications in the ACCOMPANYING DOCUMENTS when operating in an ME EQUIPMENT with horizontal MATTRESS orientation. Each value measured shall remain latched on the scale display at the conclusion of any individual measurement cycle and be retained until discarded by the OPERATOR. If the scale may be exposed to an oxygen-enriched environment in use, it shall comply with the requirements of 6.5 of the general standard.

NOTE Device calibration may be able to be both verified and updated by the OPERATOR during usage.

Compliance is checked by the following test:

Test measurements shall be demonstrated using values of 500 g (± 1 g) and 2 000 g (± 1 g). Tests shall be conducted with the ME EQUIPMENT operating at normal conditions of use.

The accuracy of measurement test shall be verified with the test loads positioned in locations M and A through D in Figure 201.103.

Figure 201.103 – Layout of weight test devices

Key
1 = Mattress
201.12.2 Usability

Additional subclauses:

201.12.2.101 *Indication of SKIN TEMPERATURE

BABY CONTROLLED TRANSPORT INCUBATORS shall be equipped with a SKIN TEMPERATURE SENSOR and the temperature measured by the sensor shall be continuously displayed and clearly visible. If, in addition, the display is used to present any other parameter, this shall be obtained only on demand using a momentary action switch. The displayed temperature range shall minimally be 33 °C to 38 °C.

Compliance is checked by inspection.

201.12.2.102 *Indication of the mode of operation

When a BABY CONTROLLED TRANSPORT INCUBATOR operates as an AIR CONTROLLED TRANSPORT INCUBATOR there shall be a clear indication of the mode of operation in use.

Compliance is checked by inspection.

201.12.2.103 Temperature control

Each temperature control, if it has a rotary action, shall be so arranged that a clockwise rotation produces an increase in temperature.

Compliance is checked by inspection.

201.12.3 ALARM SYSTEMS

Additional subclauses:

201.12.3.101 *Air circulation fan

If the INFANT TRANSPORT INCUBATOR is provided with an air circulation fan, an audible alarm, visually identifiable, shall be given and the supply to the heater shall be disconnected before a HAZARDOUS SITUATION is created in the event of:

- failure of the fan to rotate, or
- blocking of the air outlets from the TRANSPORT INCUBATOR COMPARTMENT, and
- when possible, blocking of the air inlet.
- In the event of a failure of the fan, the ME EQUIPMENT shall not emit flames, molten metal, or poisonous or ignitable gas, and the parts accessible to the INFANT shall not exceed the temperatures specified in subclause 201.11.1.2.2 of this particular standard.

Compliance is checked by running the INFANT TRANSPORT INCUBATOR as an AIR CONTROLLED TRANSPORT INCUBATOR until STEADY TEMPERATURE CONDITION is achieved at a CONTROL TEMPERATURE of 34 °C. It shall then be checked that the requirement is met when in turn:

- the fan is disabled;
- the air circulation outlet to the COMPARTMENT enclosure is blocked by a piece of closely woven cloth. Where a number of separated air inputs are provided or if protected from inadvertent blockage, the second part of the test is not required;
- blocking of the air inlet when applicable.
201.12.3.102  *Connector to SKIN TEMPERATURE SENSOR*

A BABY CONTROLLED TRANSPORT INCUBATOR shall be provided with an audible alarm visually identifiable, which sounds in the event of the connector to the SKIN TEMPERATURE SENSOR

- becoming electrically disconnected,
- having open-circuited leads, or
- having short-circuited leads.

The supply to the heater shall be automatically disconnected or the INCUBATOR shall be automatically switched over to the air control mode with a CONTROL TEMPERATURE of 36 °C ± 0,5 °C or a CONTROL TEMPERATURE set by the OPERATOR.

*Compliance is checked by simulating the specified fault conditions and observing the effects.*

The MANUFACTURER’S recommended sensor shall be connected to the control unit by slowly inserting its plug into the corresponding socket in order to determine if there are any intermediate positions that inhibit alarm activation.

201.12.3.103  Interruption of power supply

Audible alarm and visible indication shall be provided to give warning in the event of interruption of the power supply to the INFANT TRANSPORT INCUBATOR.

*Compliance is checked by disconnecting the power supply while the INCUBATOR is switched on,*

a) operating the INFANT TRANSPORT INCUBATOR from the main supply;

b) operating the INFANT TRANSPORT INCUBATOR from its TRANSPORTABLE ELECTRICAL POWER SOURCE.

*In both cases an audible and visual indication of the failure of power supply shall be provided for a minimum time of 10 min.*

201.12.3.104  AUDIO PAUSED of audible alarm

Deliberately silenced audible alarms shall have a maintained visual indication.

Such alarms shall automatically resume their normal function within a time specified by the MANUFACTURER.

*The time necessary for warming up the INCUBATOR from COLD CONDITION may be 30 min.*

*Compliance is verified by functional check and time measurement.*

201.12.3.105  Alarm function test

Means shall be provided for the OPERATOR to check the operation of audible and visual alarms. Such means shall be described in the instructions for use.

*Compliance is checked by inspection.*

201.12.4.2  Indication of parameters relevant to safety

*Additional subclause:*
201.12.4.2.101  *CO₂-concentration*

The MANUFACTURER shall disclose the value of the maximum CO₂-concentration which will occur in the COMPARTMENT under NORMAL CONDITIONS.

Compliance is checked by the following test:

A 4 % mixture of CO₂ in air shall be administered at a rate of 750 ml/min at a point 10 cm above the centre of the MATTRESS (see Figure 201.101, point M) through an 8 mm diameter tube in vertical direction from the MATTRESS to the top. CO₂ concentration at a point 15 cm from point M shall be measured when stability is achieved. The measured value shall be equal to or less than the value specified by the MANUFACTURER.

201.13  HAZARDOUS SITUATIONS and fault conditions

Clause 13 of the general standard applies, except as follows:

201.13.2.2  *Electrical SINGLE FAULT CONDITION*

Addition:

Applicable SINGLE FAULT CONDITIONS are short and open circuiting of components or wiring, which

– cause sparks to occur, or
– increase the energy of sparks, or
– increase temperatures.

201.13.2.6  *Leakage of liquid*

Addition:

A TRANSPORT INCUBATOR shall be so constructed that liquids deposited on the inside surface of the COMPARTMENT, including the INFANT tray, cannot reduce the safety of the TRANSPORT INCUBATOR.

Leakage of 200 ml is considered as NORMAL CONDITION.

Compliance is checked by the following tests:

Such an amount of water shall be sprayed on all inner surfaces of the COMPARTMENT that drops coalesce and flow down the walls. In addition, 200 ml of water shall be poured steadily on the INFANT tray. After this test ME EQUIPMENT shall satisfy all the requirements of this particular standard.

201.14  PROGRAMMABLE ELECTRICAL MEDICAL SYSTEMS (PEMS)

Clause 14 of the general standard applies.

201.15  Construction of ME EQUIPMENT

Clause 15 of the general standard applies, except as follows:
201.15.3 Mechanical strength

Additional subclauses:

201.15.3.101 Access to the INFANT

The INFANT TRANSPORT INCUBATOR shall have means by which the INFANT can be taken in and out without the need to remove the canopy completely, or to disconnect tubes, cords, leads and the like from the INFANT.

201.15.3.4.2 PORTABLE ME EQUIPMENT

Additional paragraph at the beginning of this subclause:

This subclause also applies to INFANT TRANSPORT INCUBATORS whether or not they are classified as PORTABLE ME EQUIPMENT.

Additional paragraph at the end of this subclause:

Following the above tests, the INFANT TRANSPORT INCUBATOR shall be suitable for further NORMAL USE. Mechanical and structural integrity of the INFANT TRANSPORT INCUBATOR shall be verified; for example latches and doors shall remain closed and ancillary equipment supplied by or available from the MANUFACTURER shall remain secure.

201.15.4.1 Construction of connectors

Additional subclause

201.15.4.1.101 Connection of temperature sensors

All temperature sensors (including SKIN TEMPERATURE SENSORS) shall be clearly marked with their intended function. It shall not be possible to connect a sensor to an inappropriate socket on the ME EQUIPMENT.

Compliance is checked by inspection.

201.15.4.2 Temperature and overload control devices

201.15.4.2.1 Application

Addition:

aa)* An INFANT TRANSPORT INCUBATOR shall be equipped with a THERMAL CUT-OUT which operates independently of any THERMOSTAT. It shall be so arranged that the heater is disconnected and an auditory and visual warning is given at an INFANT TRANSPORT INCUBATOR TEMPERATURE which does not exceed 40°C.

- The THERMAL CUT-OUT(S) shall be non-self-resetting but capable of being manually reset, or
- shall be self-resetting at a TRANSPORT INCUBATOR TEMPERATURE between 39°C and 34°C and the alarm shall operate continuously until manually reset.

Compliance is checked by inspection and the following tests:

With the INFANT TRANSPORT INCUBATOR set to operate as an AIR CONTROLLED TRANSPORT INCUBATOR the THERMOSTAT is disabled and the INFANT TRANSPORT INCUBATOR is switched on. At the time the alarm operates the INFANT TRANSPORT INCUBATOR TEMPERATURE shall not exceed the temperature specified above and the supply to the heater shall be disconnected. The heater supply shall not be restored until either:
– the THERMAL CUT-OUT(S) is (are) manually reset, or
– the TRANSPORT INCUBATOR TEMPERATURE falls below 39°C.

201.15.4.2.2 Temperature settings

Addition:

For an AIR CONTROLLED TRANSPORT INCUBATOR the range of CONTROL TEMPERATURES shall be from 30 °C or less to not more than 39 °C. The maximum setting of the CONTROL TEMPERATURE shall not be less than 36 °C.

Compliance is checked by inspection.

For a BABY CONTROLLED TRANSPORT INCUBATOR, the range of the CONTROL TEMPERATURE shall be from 35 °C or less to not more than 37,5 °C. The CONTROL TEMPERATURE range may be overridden by a special action of the OPERATOR up to 39 °C.

Compliance is checked by inspection.

Test:

With the INFANT TRANSPORT INCUBATOR set to operate as a BABY CONTROLLED TRANSPORT INCUBATOR the THERMOSTAT is disabled and the SKIN TEMPERATURE SENSOR is separately maintained at a temperature below the CONTROL TEMPERATURE. At the time the alarm operates the TRANSPORT INCUBATOR TEMPERATURE shall not exceed the temperature specified above and the supply to the heater shall be disconnected. The heater supply shall not be restored until either:

– the THERMAL CUT-OUT is manually reset, or
– the TRANSPORT INCUBATOR TEMPERATURE falls below 39 °C.

In NORMAL CONDITION of a BABY CONTROLLED TRANSPORT INCUBATOR where the INFANT’S temperature as measured by the SKIN TEMPERATURE SENSOR is below the CONTROL TEMPERATURE, STEADY TEMPERATURE CONDITION shall be achieved without the operation of the THERMAL CUT-OUT.

Compliance is checked by temperature measurement and functional check with the INFANT TRANSPORT INCUBATOR set to operate as a BABY CONTROLLED TRANSPORT INCUBATOR at maximum CONTROL TEMPERATURE and the SKIN TEMPERATURE SENSOR separately maintained at least 2 °C below the CONTROL TEMPERATURE.

201.15.4.6.1 Fixing, prevention of maladjustment

Addition:

Where the relative movement of any control knob and its actuating mechanism can affect the setting of the INFANT TRANSPORT INCUBATOR air temperature, they shall be positively secured together to prevent the possibility of being fixed in the incorrect position.

201.16 ME SYSTEMS

Clause 16 of the general standard applies.

201.17 Electromagnetic compatibility of ME EQUIPMENT and ME SYSTEMS

Clause 17 of the general standard applies.
202 Electromagnetic compatibility – Requirements and tests

IEC 60601-1-2:2007 applies except as follows:

202.6.2.3 Radiated RF electromagnetic fields

202.6.2.3.1 Requirements

Replacement:

For radiated radio-frequency electromagnetic fields, the INFANT TRANSPORT INCUBATOR and/or system shall

– continue to perform its intended function as specified by the MANUFACTURER at a level up to 3 V/m for the frequency range of the collateral standard for EMC;
– continue to perform its intended function as specified by the MANUFACTURER or fail without creating a safety HARM at a level up to 10 V/m for the frequency range of the collateral standard for EMC.

210 Requirements for the development of physiologic closed-loop controllers

IEC 60601-1-10:2007 applies except as follows:

210.5.1 * Instructions for use

Subclause 5.1 of IEC 60601-1-10 does not apply.

210.5.2 Technical description

Addition:

The information specified in 5.1 of IEC 60601-1-10 shall be included in the technical description.

210.6.1 USABILITY

Subclause 6.1 of IEC 60601-1-10 does not apply.

NOTE Requirements for USABILITY are specified elsewhere in this particular standard.

210.6.3 * PCLCS VARIABLE logging

Subclause 6.3 of IEC 60601-1-10 does not apply.

210.8.2.2.6 *Responses of the PCLCS

Subclause 8.2.2.6 of IEC 60601-1-10 does not apply.

Annexes

The annexes of the general standard apply.
Annex AA
(informative)

Particular guidance and rationale

Rationale for particular clauses and subclauses

The following are rationales for specific clauses and subclause in this particular standard, with clause and subclause numbers parallel to those in the body of the document.

Subclause 201.1.3 – Collateral standards

The experts of the working group have discussed and determined that some of the requirements and terminology of the collateral standard IEC 60601-1-10 are not applicable.

These are addressed in the particular clauses.

For usual INFANT TRANSPORT INCUBATOR:

– COMMAND VARIABLE is the SKIN CONTROL TEMPERATURE setting.
– CONTROLLER OUTPUT VARIABLE is heater power.
– MANIPULATED VARIABLE is air temperature.
– PHYSIOLOGIC VARIABLE is the measured SKIN TEMPERATURE of the INFANT.
– FEEDBACK VARIABLE is the output of the SKIN TEMPERATURE SENSOR.

One of the FALL BACK MODES may be to cut off the heater power.

These definitions are for information and may differ for an INFANT TRANSPORT INCUBATOR using different technologies.

Subclause 201.3.208 – INFANT TRANSPORT INCUBATOR

An INFANT TRANSPORT INCUBATOR can be a complete system with an integrated stand and wheels or just the INFANT TRANSPORT INCUBATOR alone.

Subclause 201.4.3 – ESSENTIAL PERFORMANCE

The experts of the working group have discussed and determined that these requirements are the essential requirements or essence to which a warming therapy device (i.e. INCUBATOR, warmer, heated MATTRESS, etc) must comply.

As an example, the intended use of an INCUBATOR or warmer is to apply heat to an INFANT and to keep the temperature stable within a safe region. The accuracy of the set temperature to the real temperature must be maintained within the range required by the standard and listed as a requirement in the ESSENTIAL PERFORMANCE table. If the temperature varies beyond the range listed in the requirement then the device must supply an alarm.

It should be noted that the time relationship between PATIENT and warming therapy treatment was evaluated in the discussion to resolve essential requirements. These types of devices (INCUBATOR/warmer) have real measurable response times built into most failure mode activities as opposed to ventilators or implantable devices. Therefore it was considered appropriate that combined with the requirement to define thermal performance that a failure to maintain this state if accompanied by a audible alarm, which would allow a clinician the
appropriate mitigating actions, would be the total summation of essential requirements for these type devices.

Subclause 201.4.10.101 – Ability to operate with different power sources

It is the basic object of this subclause that an INFANT TRANSPORT INCUBATOR which is fitted with an external TRANSPORTABLE ELECTRICAL POWER SOURCE shall meet with all requirements of the general standard and of this particular standard. In this particular standard special requirements are given concerning the use of the INFANT TRANSPORT INCUBATOR in conjunction with an external TRANSPORTABLE ELECTRICAL POWER SOURCE or with any other RATED SUPPLY MAINS. These are for instance: 201.4.10.102, 201.4.10.103, but also 201.12.1.114.

It is considered that these subclauses are sufficient to test the safe design of an INFANT TRANSPORT INCUBATOR together with an external TRANSPORTABLE ELECTRICAL POWER SOURCE. Yet the requirement of 201.4.10.101 ensures that the MANUFACTURER has to realize that any requirement of both the general standard and the particular standard shall be met. Therefore, the test house may choose any other requirement, especially one of those under 201.12.1.114, in order to check whether the INFANT TRANSPORT INCUBATOR meets this requirement when operated with an external TRANSPORTABLE ELECTRICAL POWER SOURCE.

Subclause 201.5.3 – Ambient temperature, humidity, atmospheric pressure

Relatively precise requirements on temperature accuracy and constancy of INFANT TRANSPORT INCUBATORS are of great importance for satisfactory treatment of the PATIENT. It is considered that these requirements should be as restrictive as generally technically possible within the ambient temperature range, which is normal for INFANT TRANSPORT INCUBATORS within the scope of this particular standard. The test ambient temperature range has therefore been limited from 21 °C to 25 °C.

The temperature range of between + 10 °C and + 30 °C has been considered as a standard range within an emergency vehicle and hospital. Ambient temperatures up to 40 °C would inhibit the required performance and safety characteristics concerning exact temperature control.

Subclause 201.7.2.101 – Oxygen monitor

INFANTS requiring supplemental oxygen are at added RISK since their arterial oxygenation is not considered adequate while breathing ambient air. Inadequate amounts of supplemental oxygen may result in brain damage or death, and excessive amounts of supplemental oxygen have been associated with an increased RISK of retinopathy (ROP) (retrolental fibroplasia (RLF)). While known concentrations of oxygen cannot be directly related to the adequacy of arterial blood gas values, it is important that attending personnel be aware of inspired concentrations (as well as other factors influencing arterial oxygenation) in order to be able to determine the reason for observed changes in the physiologic state of the INFANT.

Subclause 201.7.4.2 – Control devices

In the clinical situation the range of temperature used for BABY CONTROLLED TRANSPORT INCUBATORS is usually between 35 °C and 37 °C. Therefore narrower intervals are required for TRANSPORT INCUBATORS.

Situations have been reported whereby incorrect settings of the oxygen control have been made due to close proximity of the “max” and “min” markings on the control knob scale. 100% oxygen has thus been administered instead of the intended 21%.
Subclause 201.7.9.2.2 – Warnings and safety notices

a) It is inherent in INFANT TRANSPORT INCUBATOR design and function that in order for it to be effective for one PATIENT, it may be potentially harmful to another. It is necessary therefore, that qualified personnel with the necessary individual PATIENT information and medical knowledge is responsible for ordering all aspects of INFANT TRANSPORT INCUBATOR use.

b) The air temperature control system of an INFANT TRANSPORT INCUBATOR cannot be expected to provide protection against overheating of the INFANT due to direct radiation from sunlight or other radiant sources. Protection against this HAZARD can only be achieved by preventing its occurrence.

c), d) Several oxygen fire accidents have been reported [6]. Alcohol left in the enclosure after a cleaning PROCEDURE is suspected to be the primary ignited material. Arcs from contacts in the THERMOSTAT are thought to be the source of ignition.

Subclause 201.7.9.2.8 – Start-up PROCEDURE

It is necessary to know the warm-up time in order to prepare the INFANT TRANSPORT INCUBATOR for its intended function.

Subclause 201.7.9.2.9 – Operating instructions

a) Improper location or means of attachment of the SKIN TEMPERATURE SENSOR could cause an incorrect temperature reading or inadequate control of SKIN TEMPERATURE which would result in possible hypothermia or hyperthermia.

b) See rationale to 201.12.1.110.

c) The overloading of shelves could result in the INFANT TRANSPORT INCUBATOR tipping over or mechanical damage which could result in a HAZARD.

Subclause 201.9.4.3.102 – Prevention of movements

The ability to lock wheels eliminates unintentional movement of the ME EQUIPMENT, which could constitute a HAZARD for the PATIENT.

Subclause 201.9.4.3.104 – Prevention of vibration

During transportation, e.g., in an ambulance, there can be a high level of vibration. To reduce possible RISK to the INFANT, there should be means to lower this vibration, e.g., shock absorbers or spring / damping elements. As long as there is no test equipment created for this purpose, this is information for MANUFACTURERS of INFANT TRANSPORT INCUBATORS and ambulances.

Subclause 201.9.6.2.1.102 – Audible alarms sound level

65 dB(A) is a rather high noise level in an intensive care nursery and during transports within hospitals. Recent improvements in nursing care practices reduce noise levels and PATIENT disturbances to a minimum. Therefore the OPERATOR should have the option to reduce this sound level. OPERATORS have requested the option for adjusting frequency of auditory alarms for better identification of the particular INCUBATOR which is sounding the alarm.

Despite transport environment is very noisy, the committee decided to keep the 65 dBA limit for transport, because the PATIENT is continuously under observation of a medical professional.

Subclause 201.9.6.103 – Audible alarms sound level within COMPARTMENT

It is recognized that hearing loss can result from continuous exposure to high sound levels. While there is no scientific evidence or specific incident to show that exposure to noise levels normally encountered in INFANT TRANSPORT INCUBATORS currently used results in hearing
impairment, a conservative value based on current expert opinion on human tolerance to high sound levels was selected.

Subclause 201.9.8.3.101 – Barriers

An INFANT can crawl out of an open INFANT TRANSPORT INCUBATOR port and fall to the floor. Side panels can collapse allowing an INFANT to roll out of a bassinet. Poorly designed barriers may fail to retain the INFANT.

Subclause 201.11.2 – Fire prevention

Reports of fires in oxygen rich atmosphere in medical ME EQUIPMENT are relatively unusual. However, when such fires do occur they can be severe and very dangerous. See also subclause 201.7.9.2.2 c) and d) of this rationale.

During the review of this document, the committee was requested to consider adding a flammability requirement to the INFANT MATTRESS. Because the committee could find no evidence to support an addition of this type, this brief rationale was added to the clause.

MATTRESSES or PADS usually consist of two materials which serve two different functions. The filler functions to support or cradle the INFANT while the surface material acts as a barrier from the inner material. The primary requirement of the surface material is to present no HAZARD to the PATIENT which could contact the PATIENT under a system single fault failure. In most clinical applications the outer surface has been observed to be covered with additional coverings consisting of a natural fibre (cotton or materials supplied by PATIENT’S parent) based material which is not specifically flame retardant but functions to further reduce the low abrasion qualities of the PAD’S cover with the neonate’s skin. The primary requirements of the filler material are to provide a comfortable surface for the long-term stay of the PATIENT.

Since there is no source of ignition inside the canopy of an INCUBATOR, the RISK of fire ignition in the area of the MATTRESS is limited since the requirements of 6.5 of the general standard for an OXYGEN RICH ENVIRONMENT has been complied. No incident has been reported concerning fire ignition inside the canopy of INCUBATOR for many years. Also, even with warmer MATTRESSES, additional concerns were discussed around the toxicity of fumes that can be produced by materials that have been treated with flame retardant additives. Therefore, with the exception of elevating (accelerant) the RISK of fire from the cover material, no specific flammability rating is required of the PAD cover and the inner filler.

Subclause 201.11.6.2 – Overflow in ME EQUIPMENT

"Min" indication is required because lack of humidity may be hazardous for the PATIENT. "Max" indication is needed to prevent overfilling and spillage.

Subclause 201.11.6.3 – Spillage on ME EQUIPMENT and ME SYSTEM

INFANT TRANSPORT INCUBATORS are considered to be liable to accidental spillage due to fluid filled vessels being placed on the canopy. The test is designed to simulate typical spillage.

Subclause 201.11.6.6 – Cleaning and disinfection of ME EQUIPMENT and ME SYSTEMS

See also rationale 201.7.9.2.2.

Subclause 201.12.1.101 – Stability of TRANSPORT INCUBATOR TEMPERATURE
It is recognized that apnoea can result from variations in TRANSPORT INCUBATOR TEMPERATURE. While there is no scientific evidence to show that temperature variations normally encountered in INFANT TRANSPORT INCUBATORS result in apnoea, a conservative value has been selected.

**Subclause 201.12.1.102 – Uniformity of TRANSPORT INCUBATOR TEMPERATURE**

Long experience of both the medical and technical requirements for INFANT INCUBATORS has shown that this level of performance (2°C) is satisfactory in maintaining the temperature of the INFANT and readily achievable technically.

**Subclause 201.12.1.103 – Accuracy of SKIN TEMPERATURE**

The SKIN TEMPERATURE SENSOR’S temperature indication error is only a part of the total error associated with skin surface temperature measurement. Other errors can be introduced by variation of the area of sensor contact, contact pressure and heat exchange between the sensor and its environment.

**Subclause 201.12.1.104 – Accuracy between SKIN TEMPERATURE and CONTROL TEMPERATURE**

Accuracy to this degree is required to establish the best possible function of the SKIN TEMPERATURE SENSOR control system.

It is recognized that the recommended compliance check method does not simulate the situation of NORMAL USE of ME EQUIPMENT. The uncertainties mentioned in 201.12.1.103 of this rationale, especially the different heat exchanges between the SKIN TEMPERATURE SENSOR and its environment, make it difficult to specify such a check method. However, the specified check method is considered to be gradually more representative for measurement of the true skin surface temperature the more the skin surface temperature has converged towards the temperature of the ambient air.

**Subclause 201.12.1.105 – Accuracy of TRANSPORT INCUBATOR TEMPERATURE indication**

See Figure 201.102. This requirement ensures that the INFANT INCUBATOR runs at a temperature as close as possible to that set by the OPERATOR.

**Subclause 201.12.1.106 – Accuracy of TRANSPORT INCUBATOR TEMPERATURE control**

For the safe use of an INFANT TRANSPORT INCUBATOR it is necessary to be able to check the TRANSPORT INCUBATOR TEMPERATURE independently of the CONTROL TEMPERATURE, particularly when it is working as a BABY CONTROLLED TRANSPORT INCUBATOR or if the THERMOSTAT has failed. See also the rationale to 201.12.2.101.

**Subclause 201.12.1.107 – Warm-up time**

It is necessary to know the warm-up time in order to prepare the INFANT TRANSPORT INCUBATOR for its intended function.

**Subclause 201.12.1.108 – Overshoot of TRANSPORT INCUBATOR TEMPERATURE**

See rationale to 201.12.1.101.

**Subclause 201.12.1.109 – Accuracy of indication of relative humidity**

Knowledge of the level of relative humidity is important for respiratory care of the INFANT and for assessing air temperature requirements. INFANT heat loss is reduced as the relative humidity is increased while maintaining the air temperature constant.
Subclause 201.12.1.110 – Oxygen control

Relatively low oxygen concentrations for the PATIENT may cause brain damage. Relatively high oxygen concentration for the PATIENT may cause a retrolental fibroplasia. In SINGLE FAULT CONDITION the use of one O$_2$-sensor may cause in a HAZARDOUS SITUATION for the INFANT. Therefore, for this operation, the O$_2$-sensors are required to operate independently.

Subclause 201.12.1.111 – Air velocity

The temperature distribution requirements should not be met at the expense of high air velocities which will increase evaporative water loss of the PATIENT. The limit 0.35 m/s is derived from measurements on units considered as acceptable in this respect.

Subclause 201.12.1.116 – Weighing Scale

Weight scales used in pediatric medical equipment have unique requirements that differ significantly from those of weight scales used in general commercial or domestic weighing applications. Absolute accuracy is important, however not to the degree of accuracy (1/1000) required by commercial scales used for monetary transactions. More important from a clinical application is the information provided by weight trends, demonstrating an increase or decrease trend in the weight of the INFANT PATIENT. Absolute accuracy is very difficult at best due to electrical leads, tubing, and other PATIENT care devices that cannot be completely eliminated from the measurement.

Because weighing an INFANT is a difficult process requiring both hands of the OPERATOR in the manipulation of the INFANT PATIENT, it is necessary that the weight reading be held and displayed until such time as the OPERATOR has completed the PROCEDURE. The weight reading should be displayed until the OPERATOR has recorded it or stored it, if electronic storage is an option.

An INFANT PATIENT needs to be contained in a heated, controlled environment for an extended period of time. Moving an INFANT for any reason can be harmful to the INFANT PATIENT’S well being. INFANT PATIENTS often remain in their controlled environment, INCUBATOR or INFANT RADIANT WARMER, for 2 or more weeks. During this time it is necessary for the OPERATOR to assure the calibration of the weight scale. Additionally, it may be necessary for the OPERATOR to be able to adjust the calibration should the weight scale be out of calibration without the necessity to remove the scale or move the INFANT for calibration.

Subclause 201.12.2.101 – Indication of SKIN TEMPERATURE

The SKIN TEMPERATURE SENSOR indication of temperature error is only a part of the total error associated with skin surface temperature measurement. Other errors can be introduced by variation of the area of sensor contact, contact pressure and heat exchange between the sensor and its environment. The accuracy is best important around 36 °C when the baby is in the normal of PATIENT temperature.

Subclause 201.12.2.102 – Indication of the mode of operation

Lack of information about the control mode may result in a HAZARDOUS SITUATION for the PATIENT.

Subclause 201.12.3.101 – Air circulation fan

Air circulation patterns, altered when fans have failed or when air vents have been blocked by BLANKETS, have, in reported cases, caused the INFANT’S environment temperature to exceed safe levels without alarm activation or heater safety cut-off.
Subclause 201.12.3.102 – Connector to SKIN TEMPERATURE SENSOR

SKIN TEMPERATURE SENSORS are fragile, and the wires which connect the sensors to the control unit may break after a period of use, causing an open circuit. Also, the insulation separating the two wires may deteriorate or moisture could short-circuit the sensor. The use of open- or short-circuited or defective sensors or the incorrect connection of a sensor to the control unit can cause errors in the operation of the control system.

Subclause 201.12.4.2.101 – CO₂-concentration

It is considered that a general test, applicable to all INFANT TRANSPORT INCUBATORS, should be prescribed, giving definite performance features. It was recognized that mixing of CO₂ within the air of the COMPARTMENT is not so easy to realize and therefore a mixture of CO₂/air should be administered, instead.

Subclause 201.13.2.2 – Electrical SINGLE FAULT CONDITION

The additional specified SINGLE FAULT CONDITIONS apply specially to 201.11.2.2.1 b) 3) of this particular standard.

Subclause 201.13.2.6 – Leakage of liquid

During NORMAL USE quantities of liquid are likely to be deposited inside the COMPARTMENT, particularly on the INFANT tray.

Quantities of up to 200 ml are considered as NORMAL CONDITION, and, therefore, all protective measures should be unaffected.

Subclause 201.15.3.4.2 – PORTABLE ME EQUIPMENT

The test requirements of 15.3.4.2 of the general standard are considered to be appropriate for INFANT TRANSPORT INCUBATORS whether or not they are PORTABLE.

Subclause 201.15.4.1.101 – Connection of temperature sensors

The response of the rectal temperature of the INFANT to environmental temperature changes is slow and is not suitable for controlling the TRANSPORT INCUBATOR TEMPERATURE. The requirement of this subclause is intended to eliminate wrong application of the SKIN TEMPERATURE SENSOR.

Subclause 201.15.4.2.1 aa)

The air an INFANT breathes shall not exceed 40 °C at any time. Tracheal inspired air temperatures above 40 °C appear to increase the work of breathing and the incidence of laryngeal spasm.

In the event of failure of the primary THERMOSTAT and subsequent rise of TRANSPORT INCUBATOR TEMPERATURE, an alarm must sound to alert personnel to the danger of over-heating the INFANT.
Subclause 201.15.4.2.2 – Temperature settings

The specific requirements are considered to meet current medical needs whilst limiting HAZARDS resulting from wrong temperature settings.

Under the conditions of normal care, some preterm babies can have a core temperature of up to 38 °C; this can be normal and can require a higher SKIN TEMPERATURE.

Different temperature setting limits for “non transport” INFANT INCUBATORS are appropriate because during transport the PATIENT is continuously under observation of a medical professional and the period of use is shorter.

Subclause 202.6.2.3.1 – Requirements

The expert group does not consider the warming therapy devices to be a LIFE SUPPORTING ME EQUIPMENT as defined in the collateral standard IEC 60601-1-2 for EMC.

Subclause 210.5.1 – Instructions for use

The information required by 5.1 of IEC 60601-1-10 is necessary for SERVICE PERSONNEL but not for other OPERATORS.

Subclause 210.6.3 – PCLCS VARIABLE logging

The experts of the working group have discussed and determined that the requirement for variable logging of the collateral standard IEC 60601-1-10 is not applicable, because many BABY CONTROLLED INCUBATORS which do not have this facility have been used safely for many decades.

Subclause 210.8.2.2.6 – Responses of the PCLCS

The experts of the working group have discussed and determined that the requirement for responses of the PCLCS of the collateral standard IEC 60601-1-10 is not applicable, because relevant requirements are specified in other subclauses of this particular standard.
Bibliography


2) To be published.
Index of defined terms used in this particular standard

ACCESSORY ................................................................. IEC 60601-1:2005, 3.3
ACCOMPANYING DOCUMENT ........................................ IEC 60601-1:2005, 3.4
AIR CONTROLLED TRANSPORT INCUBATOR ...................... 201.3.201
ALARM SIGNAL .......................................................... IEC 60601-1-8:2006, 3.9
ALARM SYSTEM ........................................................... IEC 60601-1-8:2007, 3.11
APPLIED PART ............................................................ IEC 60601-1:2005, 3.8
AUDIO PAUSED ............................................................ IEC 60601-1-8:2007, 3.13
AVERAGE TEMPERATURE .............................................. 201.3.202
AVERAGE TRANSPORT INCUBATOR TEMPERATURE ............... 201.3.203
BABY CONTROLLED INCUBATOR .................................... IEC 60601-2-19:2009, 201.3.204
BABY CONTROLLED TRANSPORT INCUBATOR .................. 201.3.204
BASIC SAFETY ............................................................ IEC 60601-1:2005, 3.10
BLANKET ................................................................. IEC 80601-2-35:2009, 201.3.201
COLD CONDITION ............................................................ IEC 60601-1:2005, 3.16
COMMAND VARIABLE ..................................................... IEC 60601-1-10:2007, 3.4
COMPARTMENT ............................................................. 201.3.205
CONTROL TEMPERATURE .............................................. 201.3.206
CONTROLLER OUTPUT VARIABLE ..................................... IEC 60601-1-10:2007, 3.7
ESSENTIAL PERFORMANCE ............................................. IEC 60601-1:2005, 3.27
FALLBACK MODE ........................................................... IEC 60601-1-10:2007, 3.11
FEEDBACK VARIABLE ....................................................... IEC 60601-1-10:2007, 3.12
HAZARD ................................................................. IEC 60601-1:2005, 3.39
HAZARDOUS SITUATION .................................................... IEC 60601-1:2005, 3.40
HEATING DEVICE .......................................................... IEC 80601-2-35:2009, 201.3.207
INCUBATOR ................................................................. 201.3.201
INFANT ............................................................... 201.3.207
INFANT INCUBATOR ....................................................... IEC 60601-2-19:2009, 201.3.209
INFANT PHOTOTHERAPY EQUIPMENT ................................. IEC 60601-2-50:2009, 201.3.203
INFANT RADIANT WARMER ............................................. IEC 60601-2-21:2009, 201.3.203
INFANT TRANSPORT INCUBATOR .................................... 201.3.208
LIFE-SUPPORTING ME EQUIPMENT .................................... IEC 60601-1-2:2007, 3.18
MANIPULATED VARIABLE ................................................. IEC 60601-1-10:2007, 3.15
MANUFACTURER ............................................................ IEC 60601-1:2005, 3.55
MATTRESS ................................................................. IEC 80601-2-35:2009, 201.3.213
MEANS OF PROTECTION (MOP) ...................................... IEC 60601-1:2005, 3.60
MECHANICAL HAZARD ..................................................... IEC 60601-1:2005, 3.61
ME EQUIPMENT (MEDICAL ELECTRICAL EQUIPMENT) ........ IEC 60601-1:2005, 3.63
ME SYSTEM (MEDICAL ELECTRICAL SYSTEM) .................... IEC 60601-1:2005, 3.64
NORMAL CONDITION ...................................................... IEC 60601-1:2005, 3.70
NORMAL USE ............................................................... IEC 60601-1:2005, 3.71
OPERATOR ................................................................. IEC 60601-1:2005, 3.73
OXYGEN RICH ENVIRONMENT .......................................................... IEC 60601-1:2005, 3.75
PAD .................................................................................................... IEC 80601-2-35:2009, 201.3.216
PATIENT ............................................................................................ IEC 60601-1:2005, 3.76
PCLCS (PHYSIOLOGIC CLOSED-LOOP CONTROL SYSTEM) .............. IEC 60601-1-10:2007, 3.19
PHYSIOLOGIC CLOSED-LOOP CONTROLLER (PCLC) ..................... IEC 60601-1-10:2007, 3.20
PHYSIOLOGIC VARIABLE ............................................................. IEC 60601-1-10:2007, 3.21
PORTABLE ........................................................................................ IEC 60601-1:2005, 3.85
PROCEDURE ....................................................................................... IEC 60601-1:2005, 3.88
PROGRAMMABLE ELECTRICAL MEDICAL SYSTEM (PEMS) .......... IEC 60601-1:2005, 3.90
RATED .............................................................................................. IEC 60601-1:2005, 3.97
RISK ............................................................................................... IEC 60601-1:2005, 3.102
RISK MANAGEMENT FILE ............................................................. IEC 60601-1:2005, 3.108
SERVICE PERSONNEL ................................................................. IEC 60601-1:2005, 3.113
SINGLE FAULT CONDITION ............................................................ IEC 60601-1:2005, 3.116
SKIN TEMPERATURE ........................................................................... 201.3.209
SKIN TEMPERATURE SENSOR .......................................................... 201.3.210
STEADY TEMPERATURE CONDITION ............................................... 201.3.211
SUPPLY MAINS ................................................................................ IEC 60601-1:2005, 3.120
THERMAL CUT-OUT ......................................................................... IEC 60601-1:2005, 3.124
THERMOSTAT ..................................................................................... IEC 60601-1:2005, 3.126
TOOL ............................................................................................... IEC 60601-1:2005, 3.127
TRANSPORT INCUBATOR TEMPERATURE ......................................... 201.3.212
TRANSPORTABLE ........................................................................... IEC 60601-1:2005, 3.130
TRANSPORTABLE ELECTRICAL POWER SOURCE ......................... 201.3.213
TYPE B APPLIED PART .................................................................... IEC 60601-1:2005, 3.132
USABILITY ......................................................................................... IEC 60601-1-6:2006, 3.11
VARIABLE ........................................................................................ IEC 60601-1-10:2007, 3.28